Cho x, y >0 tm \(x+y\ge3\)
Tìm min \(M=6x^2+4y^2+10xy+\frac{4x}{y}+\frac{3y}{x}+2018\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=6x^2+4y^2+6xy+\left(xy+\dfrac{4x}{y}\right)+\left(3xy+\dfrac{3y}{x}\right)+2022\)
\(M\ge3x^2+y^2+3\left(x+y\right)^2+2\sqrt{\dfrac{4x^2y}{y}}+2\sqrt{\dfrac{9xy^2}{x}}+2022\)
\(M\ge3\left(x^2+1\right)+\left(y^2+4\right)+3\left(x+y\right)^2+4x+6y+2015\)
\(M\ge6x+4y+3\left(x+y\right)^2+4x+6y+2015\)
\(M\ge3\left(x+y\right)^2+10\left(x+y\right)+2015\ge3.3^2+10.3+2015=2072\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Áp dụng bđt 1/a + a/b >= 4/a+b với a,b > 0 và bđt côsi thì :
S >= x+y+3 . 4/4x+4y = x+y + 3/x+y = [x+y + 16/9(x+y)] + 11/9(x+y)
>= \(2\sqrt{\left(x+y\right).\frac{16}{9\left(x+y\right)}}\)+ 11/(9.4/3) = 8/3 + 11/12 = 43/12
Dấu "=" xảy ra <=> x=y=2/3
Vậy Min S = 43/12 <=> x=y=2/3
k mk nha
áp dụng tam bậc thức
đa thức cao hơn 2
biểu thức là 1 phân thức
có thể lm bài đc đó
áp dụng tam bậc thức
đa thức cao hơn 2
biểu thức là 1 phân thức
có thể lm bài đc đó