K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

2^2013 và 3^1342

(2^3)^671 và (3^2)^671

8^671 và 9^671

Vì 8 < 9

Vậy 8^671 < 9^671

Nên 2^2013 < 3^1342

17 tháng 3 2018

BTS thời nay

NO NO NO

29 tháng 10 2017

\(x^{671}+y^{671}=1\Rightarrow\left(x^{671}+y^{671}\right)^2=x^{1342}+2.x^{671}.y^{671}+y^{1342}\)\(=1\)

\(x^{1342}+y^{1342}=2\) \(\Rightarrow x^{671}.y^{671}=\dfrac{-1}{2}\)

Mặt khác: \(\left(x^{671}+y^{671}\right)^3=x^{2013}+3x^{671}y^{671}\left(x^{671}+y^{671}\right)+y^{2013}=1\)

Hay \(x^{2013}+y^{2013}-\dfrac{3}{2}.1=1\Rightarrow x^{2013}+y^{2013}=1+\dfrac{3}{2}=\dfrac{5}{2}\)

25 tháng 11 2015

\(x^{671}=a;\text{ }y^{671}=b\)

Ta có: \(a+b=0,67;\text{ }a^2+b^2=1,34\)

\(\Rightarrow b=0,67-a;\text{ }a^2+\left(0,67-a\right)^2=1,34\)

Giải phương trình theo công thức nghiệm (chính xác) rồi láp vô máy tính giá trị cần tìm.

9 tháng 9 2017

Đặt \(\hept{\begin{cases}x^{671}=a\\y^{671}=b\end{cases}}\)thì ta có

\(\hept{\begin{cases}a+b=8,023\\a^2+b^2=32,801425\end{cases}}\)

\(\Rightarrow\left(a+b\right)^2=64,368529\)

\(\Leftrightarrow=ab=15,783552\)

Ta cần tính

\(F=\left(\frac{a^3+b^3}{2012}\right)^3-8,1234\)

\(=\left(\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2012}\right)^3-8,1234\)

\(=\left(\frac{8,023.\left(32,801425-15,783552\right)}{2012}\right)^3-8,1234\)

\(=-8,12309\)                   

10 tháng 9 2017

đề này dọa người thôi, máy tính mà ==" có thấy j khó =="

13 tháng 3 2017

ta có :\(\frac{1}{2^2}< \frac{1}{1.2}\)

         \(\frac{1}{3^2}< \frac{1}{2.3}\)

         \(\frac{1}{4^2}< \frac{1}{3.4}\)  

      

         \(............\)

        \(\frac{1}{2013^2}< \frac{1}{2012.2013}\)

cộng vế với vế ta được :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2013}=\frac{2012}{2013}< \frac{2014}{2013}\)

2 tháng 3 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

............

\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1\)

Mà \(\frac{2014}{2013}>1\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< \frac{2014}{2013}\)

24 tháng 2 2018

áp dụng định lí " Gedou" chất lượng hơn số lượng

\(2^{2013}< 3^{1334}\)

24 tháng 2 2018

Làm ơn giải chi tiết giùm mik vs