Cho tam giác ABC đều; lấy điểm M thuộc cạnh BC. Gọi D;E thứ tự là hình chiếu của M trên AB;AC.
a) Tính DME.
b) Kẻ BH vuông góc AC tại H; MQ vuông góc BH tại Q.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha.
Vì ADKE là hình bình hành.
=> ^ADK = ^ AEK
=> ^ ADK + 60o = ^ AEK + 60o
=> ^BDK = ^KCE
Xét tam giác BDK = tam giác KEC ( c.g.c )
=> BK = KC ( 1 )
Có ^DAE + ^ BAC + ^ DAB + ^ EAC = 360o
=> ^ DAE + ^BAC + 120o = 360o
=> ^BAC = 240o - ^DAE
mà ^DAE = 180o - ^ADK
=> ^BAC = 60o + ^ADK = ^BDA
=> tam giác BAC = tam giác BDK ( c g.c )
=> BC = BK ( 2 )
Từ ( 1 ), ( 2 )
=> BC = BK = CK
=> tam giác KBC đều
a) Xét ΔABD vuông tại A và ΔABH vuông tại A có
DA=AH(gt)
AB là cạnh chung
Do đó: ΔABD=ΔABH(hai cạnh góc vuông)
⇒BD=BH(hai cạnh tương ứng)
Xét ΔDBH có BD=BH(cmt)
nên ΔDBH cân tại B(định nghĩa tam giác cân)
b) Ta có: AC=2AD(D là trung điểm của AC)
hay AC=2*5=10cm
Ta có: AC=2AB(gt)
hay AB=102=5cmAB=102=5cm
Áp dụng định lí pytago vào ΔABC vuông tại A, ta được
BC2=AB2+AC2BC2=AB2+AC2
hay BC2=52+102=125BC2=52+102=125
⇒BC=√125=5√5cmBC=125=55cm
Vậy: BC=5√5cm
Xét ΔDAF và ΔEBD có
DA=EB
góc DAF=góc EBD(=120 độ)
AF=BD
=>ΔDAF=ΔEBD
=>DF=ED
Xét ΔFCE và ΔEBD có
FC=EB
góc FCE=góc EBD
CE=BD
=>ΔFCE=ΔEBD
=>FE=ED
=>FE=ED=DF
=>ΔDEF đều
a) \(\Delta ABC\)đều \(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}=\widehat{BAC}=60^0\)
Áp định lý tổng 3 góc của một tam giác vào tam giác vuông DBM và ECM ta có:
\(\widehat{DBM}+\widehat{DMB}=90^0\)\(\Rightarrow\)\(\widehat{DMB}=90^0-\widehat{DBM}=30^0\)
\(\widehat{ECM}+\widehat{EMC}=90^0\)\(\Rightarrow\)\(\widehat{EMC}=90^0-\widehat{ECM}=30^0\)
Ta có:
\(\widehat{DMB}+\widehat{DME}+\widehat{EMC}=180^0\)
\(\Rightarrow\)\(\widehat{DME}=180^0-\widehat{DMB}-\widehat{EMC}=120^0\)