Tìm x biết: A=x^2+4x > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+4x>0\)
\(x\left(x+4\right)>0\)
\(\Rightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x< -4\end{cases}}\)
=> x > 0 và x < -4
Vậy : -4 > x > 0
=.= hk tốt!!
ta có x2 + 4x > 0
<=> x(x + 4 ) >0
<=> \(\orbr{\begin{cases}x>0\\x+4>0\end{cases}}\)<=> \(\orbr{\begin{cases}x>0\left(Nhận\right)\\x>4\left(Loại\right)\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
( 4x - 1 )( x + 6 ) > 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}4x-1>0\\x+6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x>-6\end{cases}}\Leftrightarrow x>\frac{1}{4}\)
2. \(\hept{\begin{cases}4x-1< 0\\x+6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{4}\\x< -6\end{cases}}\Leftrightarrow x< -6\)
Vậy với x > 1/4 hoặc x < -6 thì ( 4x - 1 )( x + 6 ) > 0
\(\left(4x-1\right)\left(x+6\right)>0\)
Th1 \(\hept{\begin{cases}4x-1>0\\x+6>\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x>-6\end{cases}}}\)
Th2 \(\hept{\begin{cases}4x-1< 0\\x+6< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{4}\\x< -6\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)
2. 5(2x - 1)2 - 3(2x - 1) = 0
<=> (2x - 1).[5(2x - 1) - 3] = 0
<=> (2x - 1).(10x - 8) = 0
<=> (2x - 1) = 0 hoặc (10x - 8) = 0
<=> x = 1/2 hoặc x = 4/5
3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3
Do: (x - 2)2 > hoặc = 0 (với mọi x)
Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)
Hay (x - 2)2 + 3 > 0 (với mọi x) => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
1/
a, đề sai ko
b, \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)
2/
a,\(A=4x^2+12x+15=\left(4x^2+12x+9\right)+6=\left(2x+3\right)^2+6\)
Vì \(\left(2x+3\right)^2\ge0\Rightarrow A=\left(2x+3\right)^2+6\ge6\)
Dấu "=" xảy ra khi 2x+3=0 <=> x=-3/2
Vậy Amin = 6 khi x=-3/2
b, \(B=x^2-4x+2=\left(x^2-4x+4\right)-2=\left(x-2\right)^2-2\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2-2\ge-2\)
Dấu "=" xảy ra khi x=2
Vậy Bmin=-2 khi x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : x2 - 4x + 4
= x2 - 2.x.2 + 22
= (x - 2)2
Mà (x - 2)2 \(\ge0\forall x\)
=> x2 - 4x + 4 \(>0\) khi x \(\ne2\)
\(x^2-4x+4>0.\)
\(\Leftrightarrow\left(x-2\right)^2>0\)
Vì \(\left(x-2\right)^2\ge0\)nên để \(\left(x-2\right)^2>0\)thì
\(\left(x-2\right)^2\ne0\)
\(\Leftrightarrow x-2\ne0\)
\(\Leftrightarrow x\ne2\)
Vây tập nghiệm của bất phương trình là {\(x\)|\(x\ne2\)}
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:x2+4x>0
=>xx+4x>0
=>x(4+x)>0
=>x và 4+x cùng dấu
+)th1:x và 4+x<0
=>x<-4 (1)
+)th2:x và 4+x lớn hơn bằng0
=>x lớn hơn bằng 0 (2)
từ (1) và (2) =>x thuộc {...,-6,-5,0,1,2,...}