K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

Chúng ta nhận thấy rằng nếu cứ lấy 0+100, 1+ 99, 2 + 98, 3 + 97....49+51 sẽ có 50 cặp tổng 100 như vậy là 5000 cộng thêm số 50 ở chính giữa nữa thì chúng ta sẽ có tổng từ 1 tới 100 là 5050 khá nhanh chóng.

17 tháng 3 2018

1 + 2 + ...... + 100 ( có 100 số hạng )

= ( 1 + 100 ) x 100 : 2

= 10100 : 2

= 5050

5 tháng 5 2021

tìm cả đk giúp mik vs

NV
5 tháng 5 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)

6 tháng 1 2022

jd76jtyjtcyj

19 tháng 10 2021

a) Tại x=16 thì A = \(\dfrac{\sqrt{16}-1}{\sqrt{16}+2}=\dfrac{4-1}{4+2}=\dfrac{1}{2}\)

b) B = \(\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\div\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

        = \(\dfrac{\sqrt{x}+1+x-\sqrt{x}}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\) 

        = \(\dfrac{x+1}{\sqrt{x}}\)

B = \(\dfrac{x+1}{\sqrt{x}}\)= 2

   ⇒ x + 1 = 2\(\sqrt{x}\) 

   ⇒ x - \(2\sqrt{x}\) +1 = 0

   ⇒ \(\left(\sqrt{x}-1\right)^2\) = 0

   ⇒ \(\sqrt{x}-1=0\)

⇒  x = 1 

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:

$S=1-3+3^2-3^3+...-3^{2021}+3^{2022}$

$3S=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}$

$\Rightarrow S+3S=3^{2023}-1$

$\Rightarrow 4S=3^{2023}-1$

$\Rightarrow 4S-3^{2023}=-1$