Chứng minh rằng:V n thuộc P,n>3 thì n2-1 luôn chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
Ta có n 2 (n + 1) + 2n(n + 1) = ( n 2 + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)
Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2
⇒ n(n + 1) ⋮ 2
n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3
⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1
vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Mình nghĩ là đề sai bạn ạ.. nếu cho a = 3k (a >3 nhưng giã thiết) , mình sẽ cho ví dụ: 6 = 3x2 nhưng 62 -1 không chia hết cho 24 nên trong bài này mình sẽ giải trong 2 trường hợp còn lại thôi nhé.
Ta có: 24=8x3 ;( 8;3 ) = (1)
Vì a > 3 nên a sẽ có dạng 3k ; 3k+1 ; 3k+2.
- nếu a có dạng 3k ta có: a2 -1 = (3k)2 -1 ( sai nên không làm )
- nếu a có dạng 3k + 1 ta có a2 + 1 = (3k+1)2 -1 = 9k2 + 6k + 1 - 1 = 9k2 + 6k chia hết cho 3
- nếu a có dạng 3k + 2 ta có a2 + 1 = (3k+2)2 - 1 = 9k2 + 12k + 4 -1 = 9k2 +12k + 3 chia hết cho 3
Suy ra a2 - 1 chia hết cho 3 (2)
Ta lại có: a2 - 1 tức là a2 - 12 (áp dụng hằng đẳng thức)
= ( a - 1 )x( a + 1 )
Mà là 2 số chẵn liên tiếp nên sẽ chia hết cho 8
Suy ra a2 - 1 chia hết cho 8 (3)
Từ (1);(2);(3) suy ra: a2 - 1 chia hết cho 24.