K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

ĐK: \(x\ge\frac{2}{3}\)

\(pt\Leftrightarrow\sqrt{3x-2}=-4x^2+21x-22\)

\(\Rightarrow3x-2=\left(-4x^2+21x-22\right)^2\)

\(\Leftrightarrow\left(4x^2-19x+18\right)\left(4x^2-23x+27\right)=0\)

\(\Leftrightarrow x=\frac{19+\sqrt{73}}{8}\text{ hoặc }x=\frac{19-\sqrt{73}}{8}\text{ hoặc }x=\frac{23+\sqrt{97}}{8}\text{ hoặc }x=\frac{23-\sqrt{97}}{8}\)

Thử các giá trị của x vào phương trình ban đầu (do đã sử dụng 1 dấu suy ra), ta thấy chỉ có 

\(x=\frac{23-\sqrt{97}}{8}\) thỏa mãn phương trình.

Kết luận: \(x=\frac{23-\sqrt{97}}{8}\)

\(PT\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0.\)

\(\Leftrightarrow3\left(x^2+7x+7\right)+2\sqrt{x^2+7x+7}-5=0\)

Đặt \(a=\sqrt{x^2+7x+7}\)(a\(\ge\)0)

\(PT\Leftrightarrow3a^2+2a-5=0\)

\(\Leftrightarrow\left(a-1\right)\left(3a+5\right)=0\)

Vì a\(\ge\)0 nên a-1=0=> a=1

lúc đó x2+7x+7=1

<=> x2+7x+6=0

<=> (x+1)(x+6)=0

<=> \(\orbr{\begin{cases}x=-1\\x=-6\end{cases}}\)

Vậy.................................

27 tháng 7 2015

3. ĐK: \(x^2-2x-1\ge0\Leftrightarrow x\le1-\sqrt{2}\text{ hoặc }x\ge1+\sqrt{2}\)

\(pt\Leftrightarrow\sqrt[3]{x^3-14}-\left(x-2\right)+2\sqrt{x^2-2x-1}=0\)

Ta sẽ chứng minh phương trình này có \(VT\ge VP\)

\(VT\ge\frac{x^3-14-\left(x-2\right)^3}{A^2+AB+B^2}+0\text{ }\left(A=\sqrt[3]{x^3-14};\text{ }B=x-2\right)\)

\(=\frac{6\left(x^2-2x-1\right)}{\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}}\ge0=VP\text{ }\left(do\text{ }x^2-2x-1\ge0\right)\)

Dấu "=" xảy ra khi \(x^2-2x-1=0\Leftrightarrow x=1+\sqrt{2}\text{ hoặc }x=1-\sqrt{2}\)

\(\text{Kết luận: }x\in\left\{1+\sqrt{2};\text{ }1-\sqrt{2}\right\}\)

29 tháng 6 2019

a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)

So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)

Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha

24 tháng 9 2021

\(ĐK:\left\{{}\begin{matrix}x\le\dfrac{1}{2};4\le x\\\dfrac{1}{2}\le x\\x\le-11;\dfrac{1}{2}\le x\end{matrix}\right.\Leftrightarrow x\le-11;4\le x\)

\(PT\Leftrightarrow\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}-\sqrt{\left(2x-1\right)\left(x+11\right)}=0\\ \Leftrightarrow\sqrt{2x-1}\left(\sqrt{x-4}-\sqrt{x+11}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\sqrt{x-4}-\sqrt{x+11}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x-4+x+11-2\sqrt{x^2+7x-44}=9\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{x^2+7x-44}=2x-2\\ \Leftrightarrow\sqrt{x^2+7x-44}=x-1\\ \Leftrightarrow x^2+7x-44=x^2-2x+1\\ \Leftrightarrow9x=45\Leftrightarrow x=5\left(tm\right)\)

Vậy \(S=\left\{\dfrac{1}{2};5\right\}\)

 

27 tháng 9 2021

https://hoc24.vn/cau-hoi/giai-pt-sqrt2x2-9x43sqrt2x-1sqrt2x221x-11.2005877637936

làm r nha :vv

24 tháng 5 2021

Đk: \(x\ge6\)

pt\(\Leftrightarrow\sqrt{5x^2+4x}=5\sqrt{x}+\sqrt{x^2-3x-18}\)

\(\Leftrightarrow5x^2+4x=25x+x^2-3x-18+10\sqrt{x\left(x^2-3x-18\right)}\)

\(\Leftrightarrow2x^2-9x+9=5\sqrt{x^3-3x^2-18x}\)

\(\Leftrightarrow4x^4+81x^2+81-36x^3-162x+36x^2=25\left(x^3-3x^2-18x\right)\)

\(\Leftrightarrow4x^4-61x^3+192x^2+288x+81=0\)

\(\Leftrightarrow\left(x-9\right)\left(4x+3\right)\left(x^2-7x-3\right)=0\)

\(\Leftrightarrow\left(4x+3\right)\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)\left(x-\dfrac{7-\sqrt{61}}{2}\right)=0\)

mà x \(\ge6\) \(\Rightarrow\left\{{}\begin{matrix}4x+3>0\\x-\dfrac{7-\sqrt{61}}{2}>0\end{matrix}\right.\)

\(\Rightarrow\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{7+\sqrt{61}}{2}\end{matrix}\right.\)

Vậy.....

NV
24 tháng 5 2021

Sau khi bình phương lần thứ nhất, đến:

\(2x^2-9x+9=5\sqrt{x^3-3x^2-18}\)

Thay vì bình phương tiếp lên bậc 4 rất cồng kềnh, em có thể đặt ẩn phụ:

\(\Leftrightarrow2x^2-9x+9=5\sqrt{\left(x+3\right)\left(x^2-6x\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-6x}=a\\\sqrt{x+3}=b\end{matrix}\right.\) ta được:

\(2a^2+3b^2=5ab\)

\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)