K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

\(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{23.26}\)

\(B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{23}-\frac{1}{26}\)

\(B=\frac{1}{2}-\frac{1}{26}\)

\(B=\frac{13}{26}-\frac{1}{26}\)

\(B=\frac{12}{26}=\frac{4}{13}\)

16 tháng 3 2018

Ta có: 3/2.5=3/3.(1/2-1/5)

3/5.8=3/3.(1/5-1/8)

3/8.11=3/3.(1/8-1/11)

...............................

3/23.26=3/3.(1/23-1/26)

Cộng từng vế ta đc:

B=3/3.(1/5-1/26)=1.21/130=21/130

30 tháng 8 2020

\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)

\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)

30 tháng 8 2020

Tính

\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)

12 tháng 5 2019

Đề là cm S>1 nha bạn!

\(S=\frac{9}{2.5}+\frac{9}{5.8}+...+\frac{9}{29.32}\)

\(=3\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)

\(=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)

\(=3\left(\frac{1}{2}-\frac{1}{32}\right)\)

\(=3.\frac{15}{32}\)

\(=\frac{45}{32}>1\)

\(\Leftrightarrow S>1\)

12 tháng 5 2019

\(S=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{29\cdot32}\)

Cách 1 : Vì hiệu hai thừa số đều là 3 = 5 - 2 = 8 - 5 = ... = 32 - 29 nên phân tích tử 9 = 3 . 3

Ta có : \(S=3\left[\frac{3}{2\cdot5}+\frac{3}{7\cdot9}+...+\frac{3}{29\cdot32}\right]=3\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{29}-\frac{1}{32}\right]\)

\(=3\left[\frac{1}{2}-\frac{1}{32}\right]=3\left[\frac{16}{32}-\frac{1}{32}\right]=3\cdot\frac{15}{32}=\frac{45}{32}\)

Mà \(\frac{45}{32}>1\)=> S không thể bé hơn 1

Cách 2 : Nhận xét : \(\frac{9}{2\cdot5}=\frac{3}{2}-\frac{3}{5};\frac{9}{5\cdot8}=\frac{3}{5}-\frac{3}{8};...\)

Vậy ta có : \(S=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{29\cdot32}=\frac{3}{2}-\frac{3}{5}+\frac{3}{5}-\frac{3}{8}+...+\frac{3}{29}-\frac{3}{32}\)

\(=\frac{3}{2}-\frac{3}{32}=\frac{3\cdot16}{32}-\frac{3}{32}=\frac{48}{32}-\frac{3}{32}=\frac{45}{32}\)

Tự so sánh , mà S đâu bé hơn 1 ???

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

29 tháng 2 2016

\(\frac{16}{11},-\frac{5}{9},\frac{10}{539}\)

22 tháng 8 2017

 bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

8 tháng 5 2015

A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101

A = 2 - 2/101 = 200/101

B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51

B = 3-3/51(tự tính nhé)

C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31

C = 5(5-1/31)(tự tính)

D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)

2E nhân lên rồi giải giống trên

3F Rồi nhân 4/77 và rút gọn thì tính được

16 tháng 7 2015

a, A= \(\frac{1}{1}\)\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)

A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))

A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0

A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)

14 tháng 6 2018

\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\)\(\frac{3}{11\cdot14}+...+\)\(\frac{3}{602\cdot605}\)

\(=\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{602\cdot605}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{602}\)\(-\frac{1}{605}\)

\(=\frac{1}{5}-\frac{1}{605}\)

\(=\frac{121}{605}-\frac{1}{605}\)

\(=\frac{120}{605}=\frac{24}{121}\)

14 tháng 6 2018

Bài này dùng công thức nhé 

\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{602.605}\)

\(=\)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{602}-\frac{1}{605}\)

\(=\)\(\frac{1}{5}-\frac{1}{605}\)

\(=\)\(\frac{24}{121}\)

Chúc bạn học tốt ~ 

4 tháng 5 2016

\(A=\frac{5-2}{2x5}+\frac{8-5}{5x8}+\frac{11-8}{8x11}+...+\frac{20-17}{17x20}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)

\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)