Tìm GTLN của biểu thức A
A= 2015
(3x+1) + | x2 - ( 1 phần 9 ) |+5
Xin mọi người giúp nhanh ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -x² - 6x + 1
= -(x² + 6x - 1)
= -(x² + 6x + 9 - 10)
= -[(x + 3)² - 10]
= -(x + 3)² + 10
Do (x + 3)² ≥ 0 với mọi x ∈ R
⇒ -(x + 3)² ≤ 0 với mọi x ∈ R
⇒ -(x + 3)² + 10 ≤ 10 với mọi x ∈ R
Vậy GTLN của A là 10 khi x = -3
\(A=-x^2-6x+1\)
\(A=-\left(x^2+6x-1\right)\)
\(A=-\left(x^2+6x+9-10\right)\)
\(A=-\left(x^2+2\cdot x\cdot3+3^2\right)+10\)
\(A=-\left(x+3\right)^2+10\)
Có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\)
\(\Rightarrow-\left(x+3\right)^2+10\le10\)
\(\Rightarrow A\le10\)
Dấu "=" xảy ra khi \(\left(x+3\right)^2=0\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: \(A_{min}=10\Leftrightarrow x=-3\)
\(6-2\left|1+3x\right|\le6\)'
Max \(A=6\Leftrightarrow1+3x=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
\(\left|x-2\right|+\left|x-5\right|\ge0\)
Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
Lời giải:
$x^4\geq 0$ với mọi $x$
$\Rightarrow x^4+1\geq 1$
$\Rightarrow (x^4+1)^2\geq 1$
$\Rightarrow (x^4+1)^2+2021\geq 1+2021=2022$
Vậy GTNN của biểu thức là $2022$. Giá trị này đạt tại $x=0$
Sửa đề: Biểu thức luôn có giá trị dương
Ta có: \(3x^2+2x-5\)
\(=3\left(x^2+\dfrac{2}{3}x-\dfrac{5}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{16}{9}\right)\)
\(=3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}\ge-\dfrac{16}{3}\forall x\)
\(\Leftrightarrow\dfrac{1}{3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}}\le\dfrac{1}{\dfrac{-16}{3}}=\dfrac{-3}{16}\forall x\)
\(\Leftrightarrow\dfrac{-1}{3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}}\ge\dfrac{3}{16}>0\forall x\)(đpcm)