Chứng tỏ rằng nếu ( a - b ) ^2 + ( b - c )^2 + ( c - 9 )^2 = 0 thì a=b=c=9
Giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2+ab+b23=25⇒a2+ab+b2325=1a2+ab+b23=25⇒a2+ab+b2325=1
Tương tự :c2+b239=1;a2+ac+c216=1c2+b239=1;a2+ac+c216=1
Áp dụng t/c dãy tỉ số bằng nhau , ta có
c2+b239=a2+ac+c216=2c2+ac+b23+a225c2+b239=a2+ac+c216=2c2+ac+b23+a225
⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23
⇒ab=2c2+ac⇒ab+ac=2c2+2ac⇒a(b+c)=2c(a+c)⇒2ca=b+ca+c (đpcm)
a) Q(2) .Q(-1) =(4a+2b+c).(a-b+c)
Vì 5a+b+2c =0=>a-b+c =-(4a+2b+c)
=>Q(2) .Q(-1) =(4a+2b+c).(a-b+c) = -(4a+2b+c)2 \(\le\)0 dpcm
b) Q(x) =0 với mọi x
+ x =0 =>Q(0) = a.0+b.0 + c =0 => c =0
+=> Q(x) = ax2 + bx = x ( ax +b) =0
Với x khác 0 => ax +b =0
=>Với x =0 => a.0 +b =0 => b =0
=> ax =0 với x khác 0 => a =0
Vậy a=b=c =0.
a, Ta có:
\(Q\left(2\right)=a.2^2+b.2+c=4a+2b+c\) (1)
\(Q\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\) (2)
Từ (1) và (2) \(\Rightarrow Q\left(2\right)+Q\left(-1\right)=4a+2b+c+a-b+c=5a+b+c=0\)
\(\Rightarrow\left[{}\begin{matrix}Q\left(2\right)=Q\left(-1\right)=0\\Q\left(2\right)=-Q\left(-1\right)\end{matrix}\right.\)
\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)
Vậy \(Q\left(2\right).Q\left(-1\right)\le0\)
b, Vì Q(x)=0 với mọi x nên
+) \(Q\left(0\right)=0\Rightarrow a.0^2+b.0+c=0\Rightarrow c=0\)
+) \(Q\left(1\right)=0\Rightarrow a.1^2+b.1+c=0\Rightarrow a+b+0=0\Rightarrow a+b=0\) (3)
\(Q\left(-1\right)=0\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=0\Rightarrow a-b+0=0\Rightarrow a-b=0\) (4)
Từ (3) và (4) suy ra (a+b)+(a-b)=0 \(\Rightarrow2a=0\Rightarrow a=0\Rightarrow b=0\)
Vậy a=b=c=0
Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-9\right)^2=0\)
Ta thấy \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-9\right)^2\ge0\)với mọi a,b,c
Do đó \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-9\right)^2\ge0\)với mọi a,b,c
Dấu "=" xảy ra khi và chỉ khi
\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-9\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}a-b=0\\b-c=0\\c-9=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=9\end{cases}\Rightarrow}a=b=c=9}\)
---> ĐPCM