Trong cùng một nửa mặt phẳng có bờ chứa đường thẳng \(MN\) hãy vẽ các góc \(\widehat{NMx}\) và \(\widehat{NMy}\) sao cho \(\widehat{NMx}=3\widehat{NMy}\)và tia \(MX\)cắt tia \(Ny\)tại \(P.\)Gọi tia \(Nz\)là tia đối của tia \(NM.\)Tính số đo của \(\widehat{PNz,}\)biết \(\widehat{NMx}+\widehat{MNY}=60^o\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Do AB // CD nên: \(\widehat{AMN}+\widehat{MNC}=180^o\) ( 2 góc trong cùng phía bù nhau )
\(\Rightarrow\widehat{AMx}+\widehat{xMN}+\widehat{MNC}=180^o\)
Do \(\widehat{AMx}=\widehat{CNy}\left(gt\right)\)
\(\Rightarrow\widehat{CNy}+\widehat{xMN}+\widehat{MNC}=180^o\)
\(\Rightarrow\left(\widehat{CNy}+\widehat{MNC}\right)+\widehat{xMN}=180^o\)
\(\Rightarrow\widehat{MNy}+\widehat{xMN}=180^o\)
Mà 2 góc \(\widehat{MNy},\widehat{xMN}\) ở vị trí trong cùng phía
\(\Rightarrow\)Mx // Ny ( đpcm )
Vậy...
a) Vì \(\widehat{AMx}=\widehat{B}\), hai góc này ở vị trí đồng vị nên Mx // BC.
Giả sử Mx không cắt AC. Suy ra Mx // AC. Mx // AC, Mx // BC nên AC // BC(mâu thuẫn với giả thiết ABC là tam giác). Vậy Mx cắt AC
b) Vì \(\widehat{CNy}=\widehat{C}\), hai góc này ở vị trí so le trong nên Ny // BC.
Ny // BC, Mx // BC nên Mx // Ny.
a) Ta có: mà hai góc đó là hai góc so le trong nên
suy ra (1)
mà hai góc đó là hai góc so le trong nên suy ra (2)
Từ (1) và (2) suy ra Ax và Ay cùng // BC.
Lại có tia Ax thuộc mặt phẳng bờ AB có chứa điểm C, tia Ay thuộc mặt phẳng
bờ AB không chứa điểm C
Ax và Ay là hai tia đối nhau.
b) Vì Ax và Ay là hai tia đối nhau (cmt) mà và
nên suy ra
Mà nên suy ra
Bài 1:
a) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOm}< \widehat{xOy}\left(30^0< 60^0\right)\)
nên tia Om nằm giữa hai tia Ox và Oy
\(\Leftrightarrow\widehat{xOm}+\widehat{yOm}=\widehat{xOy}\)
\(\Leftrightarrow\widehat{yOm}=\widehat{xOy}-\widehat{xOm}=60^0-30^0=30^0\)
Ta có: tia Om nằm giữa hai tia Ox và Oy(cmt)
mà \(\widehat{xOm}=\widehat{yOm}\left(=30^0\right)\)
nên Om là tia phân giác của \(\widehat{xOy}\)(đpcm)