Cho a,b,c thuộc N*,Chứng minh a/b+c + b/a+c + c/a+b > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a>b\) nên \(a=b+m\) \(\left(m\inℕ^∗\right)\)
Ta có : \(\frac{a}{b}=\frac{b+m}{b}=1+\frac{m}{b}\)
\(\frac{a+c}{b+c}=\frac{b+m+c}{b+c}=1+\frac{m}{b+c}\)
Mà \(\frac{m}{b}>\frac{m}{b+c}\) nên \(1+\frac{m}{b}>1+\frac{m}{b+c}\)
hay \(\frac{a}{b}>\frac{a+c}{b+c}\) (đpcm)
Theo cj nghĩ :
\(a>b\Rightarrow a-b>0\left(a;b\inℕ^∗\right)\)
Mà : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)
Do đó : \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé! :)
a/bc + b/ac >= 2.căn(1/c^2) = 2/c
tương tự:
a/bc + c/ab >= 2/b
b/ac + c/ab >= 2/a
cộng vế theo vế ;
ta đc
a/bc +b/ac+ c/ab >= 1/a +1/b +1/c
2)
a / (b+c) + 1 = (a+b+c)/(b+c)
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 = (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
áp dụng bđt cauchy quen thuộc
(x+y+z)(1/x + 1/y + 1/z) >= 9
=> 2(a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
= (a+b + b+c + c+a)(1/(b+c) + 1/(a+c) + 1/(a+b)) >=9
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) >= 9/2
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) >=3/2
Chắc làm vậy
Trong 4 số a,b,c,d sẽ có ít nhất 2 số có cùng số dư khi chia cho 3 nên tích đó sẽ chia hết cho 3.
Trong 4 số a,b,c,d
Nếu có 2 số có cùng số dư khi chia cho 4 thì tích đó chia hết cho 4
Nếu không có cùng số dư thì số dư của 4 số đó chia cho 4 lần lược sẽ là 0,1,2,3. Vậy trong 4 số này có 2 số chẵn, 2 số lẻ. Mà hiệu 2 số chẵn và lẻ đều là số chẵn nên tích đó phải có ít nhât 2 số chẵn hay tích đó chia hết cho 4
Vì 3 và 4 nguyên tố cùng nhau nên tích đã cho chia hết cho 12
(a+b+c)(1/a+1/b+1/c)=<10?
ài này phải có thêm đk là 1 ≤ a, b, c ≤ 2 ; nếu ko có đk này thì bđt chưa đúng như bác Hoàng Khôi đã dẫn ra chổ sai
hơn nữa tôi có thấy bài này 1 lần có đk đó: a, b, c thuộc [1,2]
và vp-two có giải là: (a+b+c)(1/a+1/b+1/c) ≥ 9
(chứ không phải là ≤ 9 như @Inguyenmai đâu nha)
- - -
cần cm: (a+b+c)(1/a+1/b+1/c) ≤ 10 (♥)
<=> a/b + a/c + b/a + b/c + c/a + c/b ≤ 7 (♥♥)
không giãm tính tổng quát giả sử 1 ≤ a ≤ b ≤ c ≤ 2
ta có: (a-b)(b-c) ≥ 0 <=> ab+bc ≥ b² + ac (*)
chia 2 vế của (*) cho bc ta có: a/c + 1 ≥ b/c + a/b (1*)
chia 2 vế của (*) cho ab ta có: 1 + c/a ≥ c/b + b/a (2*)
lấy (1*) + (2*) và đổi hướng bđt ta có:
b/c + a/b + c/b + b/a ≤ 2 + a/c + c/a
=> a/b + a/c + b/a + b/c + c/a + c/b ≤ 2 + 2(a/c + c/a) (**)
do giả thiết: 1 ≤ a ≤ c ≤ 2 nên 1 ≤ c/a ≤ 2 => c/a - 2 ≤ 0 và c/a - 1/2 ≥ 0
=> (c/a - 1/2)(c/a - 2) ≤ 0 <=> (c/a)² - (5/2)(c/a) + 1 ≤ 0
=> (c/a)² + 1 ≤ (5/2).(c/a) (tiếp theo là chia hai vế cho c/a )
=> c/a + a/c ≤ 5/2 ; thay vào (**) ta có
a/b + a/c + b/a + b/c + c/a + c/b ≤ 2 + 2(5/2) = 7 vây (♥♥) đúng => (♥) đúng
dấu "=" khi c/a = 2 => c = 2, a = 1 , (b = 1 hoặc b = 2)
tức dấu "=" tại: a = b = 1; c = 2 hoặc a = 1, b = c = 2 và các hoán vị
p/s:tham khảo
K hiểu