Tìm x để biểu thức: 5x\(^{^2}\)-10x+5 có giá trị bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : x2-5x khác 0
<=>x.(x-5) khác 0
<=> x khác 0 và x khác 5
a)
\(\frac{x^2-10x+25}{x^2-5x}=0\Rightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\)
<=>x-5=0
<=>x=5
Mà x khác 5 nên không có x nào thỏa mãn phân thức bằng 0
b)\(\frac{x^2-10x+25}{x^2-5x}=\frac{5}{2}\Leftrightarrow\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\Leftrightarrow\frac{2.\left(x-5\right)}{2x}=\frac{5x}{2x}\)
\(\Rightarrow2\left(x-5\right)=5x\Leftrightarrow2x-10=5x\Leftrightarrow-3x=10\Leftrightarrow x=-\frac{10}{3}\)
c) \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{x-5}{x}=1-\frac{5}{x}\)
Để phân thức trên nguyên thì : 1-5/x là số nguyên
=>5/x là số nguyên
=>x thuộc Ư(5)={1;-1;5;-5}
Mà x khác 5 nên: x={1;-1;-5}
Vậy x={1;-1;-5}
ĐKXĐ: \(x^2-5x\ne0\)
\(\Leftrightarrow x\left(x-5\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
Ta có: \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\)
Để \(\frac{x-5}{x}=0\Leftrightarrow x=5\)( Điều kiện không thỏa mãn )
Vậy không có giá trị nào của x để \(\frac{x^2-10x+25}{x^2-5x}=0\)
b) Để giá trị của phân thức trên bằng \(\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\)
\(\Leftrightarrow\left(x-5\right).2=5x\)
\(\Leftrightarrow2x-10=5x\)
\(\Leftrightarrow3x=-10\)
\(\Leftrightarrow x=-\frac{10}{3}\)
\(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\left[\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\right]:\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\frac{x^2-\left(x^2-10x+25\right)}{x\left(x-5\right)\left(x+5\right)}:\frac{10x-25}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{10x-25}+\frac{x}{5-x}\)
\(=\frac{1}{x-5}-\frac{x}{x-5}\)
\(=\frac{1-x}{x-5}=-\frac{x-1}{x-5}=-\frac{x-5+4}{x-5}=-1-\frac{4}{x-5}\)
Để P nguyên <=> x - 5 thuộc Ư(4) = {1;-1;2;-2;4;-4}
Ta có bảng:
x - 5 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 6 | 4 | 7 | 3 | 9 | 1 |
Vậy....
Điều kiện cuả biến:
hay
Do đó điều kiện của biến là
Rút gọn phân thức:
Phân thức có giá trị bằng 0 khi
Hay hay x = 5
Nhưng x = 5 không thỏa mãn điều kiện của biến. Vậy không có giá trị nào của x để giá trị của phân thức thức 0.
\(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}\)(ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\))
Để phân thức có giá trị bằng 0 thì (x-5)2 = 0 <=> x = 5 (loại vì không thoả mãn ĐKXĐ)
Vậy không có giá trị nào của x thoả mãn đề bài.
để 5x-10x+5 thì 5x-10x+5 =0
(5-10)x+5=0
-5x+5=0
-5x=0-5
-5x=-5
x=-5:(-5)
x=1
vậy x=1 để biêu thức trên có giá trị bằng 0
\(5x^2-10x+5=0\)
\(\Leftrightarrow5\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow5\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)