Tim GTNN:
\(x^2+y^2-2x+6y+14\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(C=2\left(x^2+\dfrac{5}{2}x-\dfrac{1}{2}\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{33}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2-\dfrac{33}{8}>=-\dfrac{33}{8}\)
Dấu '=' xảy ra khi x=-5/4
b: \(=x^2+4x+4+y^2-6y+9-6\)
\(=\left(x+2\right)^2+\left(y-3\right)^2-6>=-6\)
Dấu '=' xảy ra khi x=-2 và y=3
\(x^2+2y^2+2xy-2x-6y+2015\\ =\left(x^2+y^2+1^2+2.x.y-2.x-2.y\right)+\left(y^2-4y+4\right)+2010\\ =\left(x+y-1\right)^2+\left(y-2\right)^2+2010\)
\(\left\{{}\begin{matrix}\left(x+y-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2\ge0\\ \Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
vậy GTNN của biểu thức là 2010 khi và chỉ khi x=-1 và y=2
2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y)
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm
dau = cay ra <=> x=y=z=1/3
\(M=x^2+y^2-2x+6y+28=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+18=\left(x-1\right)^2+\left(y+3\right)^2+18\ge18\)
\(minM=18\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Câu 1.
P = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinP = 4 <=> x = 1
Q = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2 ≥ -9/2 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinQ = -9/2 <=> x = 3/2
M = x2 + y2 - x + 6y + 10
= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4
= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
=> MinM = 3/4 <=> x = 1/2 ; y = -3
Câu 2.
A = 4x - x2 + 3
= -( x2 - 4x + 4 ) + 7
= -( x - 2 )2 + 7 ≤ 7 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxA = 7 <=> x = 2
B = x - x2
= -( x2 - x + 1/4 ) + 1/4
= -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxB = 1/4 <=> x = 1/2
N = 2x - 2x2
= -2( x2 - x + 1/4 ) + 1/2
= -2( x - 1/2 )2 + 1/2 ≤ 1/2 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxB = 1/2 <=> x = 1/2
Làm gần xong thì lỡ bấm out ra TT
\(P=x^2-2x+5=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy minP = 4 <=> x = 1
\(Q=2x^2-6x=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)
Vậy minQ = - 9/2 <=> x = 3/2
\(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy minM = 3/4 <=> x = 1/2 và y = - 3
\(P=x^2+y^2-2x+6y+19\)
\(=x^2-2x+1+y^2+6y+9+9\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+9\)
\(\left(x-1\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2+9\ge9\)
Dấu ''='' xảy ra khi \(\left[\begin{array}{nghiempt}x-1=0\\y+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\y=-3\end{array}\right.\)
Vậy \(MinP=9\Leftrightarrow x=1;y=-3\)
\(x^2+y^2-2x+6y+14=x^2-2x+1+y^2+6y+9+4\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+4\)
\(\text{Vì }\left(x-1\right)^2;\left(y+3\right)^2\ge0\text{ nên :}\left(x-1\right)^2+\left(y+3\right)^2+4\ge4\)
\(\text{Dấu "=" xảy ra khi : }x-1=0\text{ và }y+3=0\)
\(\Leftrightarrow x=1\text{ và }y=-3\)
\(\text{Vậy GTNN của }x^2+y^2-2x+6y+14\text{ là }4\text{ tại }x=1\text{ và }y=-3\)