K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Gợi ý :

a) y = 2 => x = 2 hoặc -2 ( do có thể < 0 hay > 0 )

b) S(OAB) = 1 => |x| = 1 => x = 1 hoặc -1

c) Gọi khoảng cách từ O tới (d) là OH

OH bé hơn hoặc bằng khoảng cách 2 của O tới điểm cố định trên Oy

=> max = 2 khi d song^2 Ox => x = 0 => đúng mọi m

d)  Thay vào biểu thức hệ thức lượng => khoảng cách từ O tới điểm mà d cắt trên Ox là 0 => d trùng Oy

e) thay x vào có kết quả

f) cắt tại điểm > 2 => biểu thức biểu diễn x > 2 ( -2/(m+3)   )

NV
14 tháng 5 2020

Tọa độ A: \(\left\{{}\begin{matrix}y=0\\y=\left(m^2+1\right)x+2\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{2}{m^2+1};0\right)\)

\(\Rightarrow OA=\left|x_A\right|=\frac{2}{m^2+1}\)

Tọa độ B: \(x=0\Rightarrow y=2\Rightarrow B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)

\(S_{OAB}=\frac{1}{2}OA.OB=\frac{2}{m^2+1}=\frac{1}{2}\)

\(\Rightarrow m^2+1=4\Rightarrow m=\pm\sqrt{3}\)

b/

Gọi H là hình chiếu vuông góc của O lên (d)

\(\Rightarrow OH\) là k/c từ O đến (d)

Theo hệ thức lượng: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{OA^2}+\frac{1}{4}\)

\(\Rightarrow OH=\frac{2OA}{\sqrt{OA^2+4}}=\frac{2}{\left(m^2+1\right)\sqrt{\frac{1}{\left(m^2+1\right)^2}+1}}=\frac{2}{\sqrt{m^2+2}}\le\sqrt{2}\)

Dấu "=" xảy ra khi \(m=0\)

25 tháng 1 2022

1, Ta có : y = mx - 2m - 1 

<=> m ( x - 2 ) - 1 - y = 0 

<=> m(x - 2) - (y+1) = 0

Dấu ''='' xảy ra khi x = 2 ; y = -1 

Vậy (d) luôn đi qua A(2;-1) 

2, (d) : y = mx - 2m - 1

Cho x = 0 => y = -2m - 1 

=> d cắt Oy tại A(0;-2m-1) 

=> OA = \(\left|-2m-1\right|\)

Cho y = 0 => x = \(\dfrac{2m+1}{m}\)

=> d cắt trục Ox tại B(2m+1/m;0) 

=> OB = \(\left|\dfrac{2m+1}{m}\right|\)

Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)

\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)

<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)

 

 

25 tháng 1 2022

cảm ơn anh nhiều, 2 bài rồi anh vẫn giúp em

loading...  loading...  

15 tháng 8 2023

thank you so much  limdimhaha

Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x-2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2}{m-1}\end{matrix}\right.\)

=>\(A\left(\dfrac{2}{m-1};0\right)\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m-1\right)\cdot x-2=0\left(m-1\right)-2=-2\end{matrix}\right.\)

=>B(0;-2)

O(0;0); \(A\left(\dfrac{2}{m-1};0\right)\); B(0;-2)

\(OA=\sqrt{\left(\dfrac{2}{m-1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2}{m-1}\right)^2}=\dfrac{2}{\left|m-1\right|}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(-2-0\right)^2}=\sqrt{0+4}=2\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot\dfrac{2}{\left|m-1\right|}=\dfrac{2}{\left|m-1\right|}\)

Để \(S_{OAB}=8\) thì \(\dfrac{2}{\left|m-1\right|}=8\)

=>\(\left|m-1\right|=\dfrac{1}{4}\)

=>\(\left[{}\begin{matrix}m-1=\dfrac{1}{4}\\m-1=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5}{4}\\m=\dfrac{3}{4}\end{matrix}\right.\)