K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

12.(x-1)=68.3

12.(x-1)=204

x-1=204:12

x-1=17

=>x=18

 

8 tháng 1 2018

a) Ta thấy: 18x12-9x24=216-216=0

Vậy biểu thức tên bằng 0(vì có 1 thừa số là 0)

b)Ta thấy: 15x30-45x10=10.(15x3-45)=10.(45-45)=10.0=0

Vậy biểu thức tên bằng 0(vì có 1 thừa số là 0)

a) \(\left(68\times77\times49\right)\times\left(18\times12-9\times24\right)\)\(=\left(68\times77\times49\right)\times0\)\(=0\)

b)\(\left(15\times30-45\times10\right)\times\left(1+2+3+...+100\right)\)\(=0\times\left(1+2+3+...+100\right)\)\(=0\)                         

19 tháng 12 2021

\(a,12\left(x-1\right)=0\\ x-1=0\\ x=1\\ b,45+5\left(x-3\right)=70\\ 5\left(x-3\right)=25\\ x-3=5\\ x=8\\ c,3.x-18:2=12\\ 3.x-9=12\\ 3.x=21\\ x=7\)

19 tháng 12 2021

12(x-1)=0

     (x-1)=0:12

      x-1=0

      x=0+1

      x= 1

Vậy x= 1

 

4 tháng 6 2023

Ta nhận thấy tổng các hệ số trong phương trình đã cho là 

\(1-2\left(m-1\right)+2m-3=0\) nên pt này luôn có 1 nghiệm bằng 1, còn nghiệm kia là \(2m-3\). Do vai trò của \(x_1,x_2\) trong \(x^2+2x_1x_2-x_2=1\) là không như nhau nên ta phải chia làm 2TH:

 TH1: \(x_1=1;x_2=2m-3\). Khi đó ta có 

\(1+2\left(2m-3\right)-\left(2m-3\right)=1\) \(\Leftrightarrow2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)

 TH2: \(x_1=2m-3;x2=1\). Khi đó

\(\left(2m-3\right)^2+2\left(2m-3\right)-1=1\) \(\Leftrightarrow4m^2-8m+1=0\) \(\Leftrightarrow m=\dfrac{2\pm\sqrt{3}}{2}\)

Vậy để pt đã cho có 2 nghiệm \(x_1,x_2\) thỏa ycbt thì \(\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{2\pm\sqrt{3}}{2}\end{matrix}\right.\)

a: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2-4m+5\right)\)

\(=4\left(m+1\right)^2-4\left(m^2-4m+5\right)\)

\(=4m^2+8m+4-4m^2+16m-20\)

=24m-16

Để phương trình có hai nghiệm thì Δ>=0

=>24m-16>=0

=>24m>=16

=>\(m>=\dfrac{2}{3}\)

b: Bạn xem lại đề nha bạn

30 tháng 1

dạ câu b đổi lại thành + ý ạ

23 tháng 3 2022

a)thay m=1 vào pt ta có 

\(x^2+4x=0\)

<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b) thay x=2 vào pt ta có: 13+m=0

<=>m=-13

thay m=-13 vào pt ta có

\(x^2+4x-12=0\)

<=>(x-2)(x+6)=0

<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)

vậy với m=-13 thì nghiệm còn lại là x=-6

c) để pt có 2 nghiệm pb thì \(\Delta>0\)

<=>16-4m-4>0

<=>3-m>0

<=>m<3

áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)

theo đề bài ta có \(x_1^2+x_2^2=10\)

<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>16-2m-2=10

<=>2-m=0

<=>m=2(nhận)

vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.

 

 

Δ=(-2)^2-4(-2m+1)

=4+8m-4=8m

Để phương trình có nghiệm thì 8m>=0

=>m>=0

\(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)

=>\(2\cdot\left(x_1\cdot x_2\right)^2-x_2^2-x_1^2=8\)

=>\(2\cdot\left(-2m+1\right)^2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=8\)

=>\(2\left(2m-1\right)^2-\left[2^2-2\left(-2m+1\right)\right]=8\)

=>\(8m^2-8m+2-4+2\left(-2m+1\right)=8\)

=>\(8m^2-8m-2-4m+2-8=0\)

=>8m^2-12m-8=0

=>m=2 hoặc m=-1/2(loại)

a: Khi m=-1 thì phương trình sẽ là:

x^2-(-3-1)x+2-1-1=0

=>x^2+4x=0

=>x=0 hoặc x=-4