Câu hỏi: cho tam giac ABC vuông tại A có AB = 6cm, AC = 8cm; dường phân giác BI. Kẻ IH vuông góc BC ( H € BC). Gọi K là giao điểm của AB và IH.
a) tính BC?
b) chứng minh : tam giác ABI và tam giác HBI
c) chứng minh: BI là đường trung trực của đoạn thẳng AH
d) chứng minh: IA nhỏ hơn IC
e) chứng minh: I là đường trực tâm tam giác ABC
a/ \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pythagore)
=> BC2 = 62 + 82
=> BC = \(\sqrt{6^2+8^2}\)
=> BC = \(\sqrt{100}\)= 10 (cm)
b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là phân giác \(\widehat{B}\))
Cạnh huyền BI chung
=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)