\(\frac{25x4-0,5x40x5x0,2x20x0,25}{1+2+4+8+...+128+256}\) Tính Nhanh
Cần gấp !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính bằng cách thuận tiện : \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}+\frac{1}{256}\)
Dễ lắm bạn à :
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A=2\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}+\frac{1}{128}\)
\(\Leftrightarrow2A-A=2+1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}+\frac{1}{128}-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Leftrightarrow A=2-\frac{1}{256}=\frac{511}{256}\)
đặt A= 1+1/2+1/4+1/8+...+1/128+1/256
2A=2+1+1/2+1/4+...+1/64+1/128
2A-A=A=2-1/256=511/256
Theo đề bài ta có :
\(2B=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Leftrightarrow2B-B=\left(1+\frac{1}{2}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(\Leftrightarrow B=1-\frac{1}{256}\)
\(\Leftrightarrow B=\frac{255}{256}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..+\frac{1}{256}\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^8}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^7}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(\Rightarrow B=1-\frac{1}{2^8}\)
\(A\cdot2=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{256}\right)\cdot2\)
\(=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}\)
\(A\cdot2-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}=\frac{255}{256}\)
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^7}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(A=1-\frac{1}{2^8}\)
\(A=\frac{2^8-1}{2^8}\)
\(A=\frac{255}{256}\)
1+2+4+8+16+32+64+128+256+512+1024+2048
=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024
=1+10+20+160+320+2560+1024
=4095
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095
k nha công chúa nụ cười =_= ^_^
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
2A = 1/2 x 2 + 1/4 x 2 + 1/8 x 2 + 1/16 x 2 + 1/32 x 2 + 1/64 x 2 + 1/128 x 2 + 1/256 x 2 + 1/512 x 2
2A = 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A - A = ( 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 )
A = 1 - 1/512
A = 511/512
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{128}-\frac{1}{256}\)
=\(1-\frac{1}{256}\)
=\(\frac{255}{256}\)
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
= 128/256 + 64/256 + 32/256 + 16/256 + 8/256 + 4/256 + 2/128 + 1/256
= 255/256
Dễ thôi mà
\(\frac{25\times4-0,5\times40\times5\times0,2\times20\times0,25}{1+2+4+8+...+128+256}\)\(=\frac{100-\left(0,5\times20\right)\times\left(40\times0,25\right)\times\left(5\times0,2\right)}{1+2+4+8+...+128+256}\)
\(=\frac{100-10\times10\times1}{1+2+4+8+...+128+256}\)\(=\frac{100-100}{1+2+4+8+...+128+256}\)\(=\frac{0}{1+2+4+8+...+128+256}\)= 0
Chúc e học tốt!