K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

Ta có : 

1/6 < 1/5 , 1/7 < 1/5 , ... 1/19 < 1/5

=> 1/6 + 1/7 + ...+ 1/19 < 1/5 + 1/5 + ...+ 1/5

=> 1/6 + 1/7 + ...+ 1/19  < 1/5 . 14 

=> 1/6 + 1/7 + ...+ 1/19 < 14/5 = 2 , 8 

13 tháng 3 2023

Có: 1/5 =1/5

1/6<1/5

1/7<1/5

1/8<1/5

1/9<1/5

=> 1/5+1/6+1/7+1/8+1/9<1/5+1/5+1/5+1/5+1/5=1.

Vậy 1/5+1/6+1/7+1/8+1/9<1(đpcm).

13 tháng 3 2023

(1/5 + 1/6 + 1/7 + 1/8 + 1/9)<(1/5 x 5)

(Vì 5 số hạng biểu thức đề cho có 4 số hạng nhỏ hơn 1/5 và chỉ có 1/5 = 1/5)

⇒ (1/5 + 1/6 + 1/7 + 1/8 + 1/9) < 1

Vậy...

 

15 tháng 5 2023

Ta có : \(\dfrac{1}{6}>\dfrac{1}{10}\)

\(\dfrac{1}{7}>\dfrac{1}{10}\)

\(\dfrac{1}{8}>\dfrac{1}{10}\)

\(\dfrac{1}{9}>\dfrac{1}{10}\)

\(\dfrac{1}{10}=\dfrac{1}{10}\)

Cộng tất cả các vế ( phải theo phải ) ( trái theo trái ta được )

\(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{5}{10}=\dfrac{1}{2}\)

15 tháng 5 2023

Ta có:
\(\dfrac{1}{6}>\dfrac{1}{10}\)
\(\dfrac{1}{7}>\dfrac{1}{10}\)
\(\dfrac{1}{8}>\dfrac{1}{10}\)
\(\dfrac{1}{9}>\dfrac{1}{10}\)
\(\dfrac{1}{10}=\dfrac{1}{10}\)
Do đó ta có:
\(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}\times5\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{5}{10}=\dfrac{1}{2}\)
Vậy \(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{2}\)

14 tháng 7 2016

 Ta có: 

 7^17 +17.3 -1 = 7^17 +50 chia hết cho 9 
Mà 50 chia 9 dư 5 
=> 7^17 chia 9 dư 4 
=> 7^17 .7 chia 9 dư 1 
<=> 7^18 chia 9 dư 1 
18.3 -1 = 53 chia 9 dư 8 
=> 7^18 +18.3 -1 chia hết cho 9 

1: =72/90+65/90=137/90

2: =24/56-77/56=-53/56

3: =-7/10+4/5=1/10

4: =15/100-4/100=11/100

5: =4/6-5/6=-1/6

6: =10/40-15/40-76/40=-81/40

7: =-9/10+7/18

=-81/90+35/90=-46/90=-23/45

8: =27/90-55/90=-28/90=-14/45

9: =36/60-50/60-35/60=-49/60

10: =-4/9+5/6-3/8

=-32/72+60/72-27/72

=1/72

14 tháng 5 2020

\(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}⋮11\)

\(A=\frac{11}{22}+\frac{11}{33}+...+\frac{11}{99}⋮11\)

\(A=11.\left(\frac{1}{22}+\frac{1}{33}+...+\frac{1}{99}\right)⋮11\)

\(\Rightarrow A⋮11\)(vì tổng A có thể tách thành một tích nhân với 11)

(mình làm sai nhớ đừng ném đá mình)

14 tháng 5 2020

chỗ tổng A có thể tách ... bạn nhớ sửa là tổng A có thể tách thành một tích có thừa số 11 nhé bạn

12 tháng 7 2015

Ta có:

1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)

Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2

   1/9 + 1/10 + 1/11 <3x1/9 = 1/3

   1/12 + 1/13 +1/14 < 3x1/12 = 1/4

   1/15 + 1/16 < 3 x 1/15 = 1/5

Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)

Lập luận tương tự có:

A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16

Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

Làm piếng viết phân số nên bạn lm đỡ nhé!!!!!!!!!!!!!!

11 tháng 4 2018

de lam ban oi!

11 tháng 4 2018

ta có

1/2<1/1.2

1/3<1/2.3

...

1/32<1/31.32

=>1/2+1/3+...+1/32<1/1.2+1/2.3+...+1/31.32

=>1/2+1/3+...+1/32<1/1-1/2+1/2-1/3+...+1/31-1/32

=>1/2+1/3+...+1/32<1/1-1/32=31/32

vì 31/32<1

=>tổng đó <1

ta lại có 1+1=2 mà 2 <3

=>tổng đó <3

vậy:-------(bn tự lm nha)

k cho mik vs nha

1 tháng 7 2021

Đặt A = \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+....+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\) 

\(A=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}+...+\frac{1}{19}\right)\) 

\(\Rightarrow A< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)

\(\Rightarrow A< \frac{1}{5}\cdot5+\frac{1}{10}\cdot5+\frac{1}{15}\cdot5\)

\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}\)

\(\Rightarrow A< \frac{11}{6}< 2\) 

\(\Rightarrow A< 2\left(đpcm\right)\)