K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

Do đo: ΔBNC vuông tại N

Xet ΔABC có

BN,CM là các đường cao

BN cắt CM tại H

Do đó; H là trực tâm

=>AH vuông góc với BC

a: Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: AH⊥BC

5 tháng 9 2023

giúp mik với các bạn

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>CF vuông góc AB

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE vuông góc AC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm

=>AH vuông góc BC tại D

b: Xét tứ giác AFHE có

góc AFH+góc AEH=90+90=180 độ

=>AFHE nội tiếp đường tròn đường kính AH

I là trung điẻm của AH

c:

Xét tứ giác BFHD có

góc BFH+góc BDH=180 độ

=>BFHD nội tiếp

=>góc DFH=góc DBH=góc EBC

góc IFD=góc IFH+góc DFH

=góc IHF+góc EBC

=góc DHC+góc EBC

=90 độ-góc FCB+góc EBC

=90 độ

=>IF là tiếp tuyến của (O)

Xét ΔIFD và ΔIED có

IF=IE

FD=ED

ID chung

=>ΔIFD=ΔIED

=>góc IED=góc IFD=90 độ

=>IE là tiếp tuyến của (O)

7 tháng 11 2021

a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC

=> OA=OB=OC và O là trung điểm của BC

=> Tam giác ABC vuông tại A

=> góc BAC = 90 độ

b) DO tam giác HAK nội tiếp đường tròn (I) 

Lại có góc HAK = 90 độ

=> HK là đường kính của (I)

=> HK đi qua I

=> H,I,K thẳng hàng

c) Đề bài ghi ko rõ

d) 3 điểm nào?

Xét (M) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

=>\(\widehat{AHB}=90^0\)

Xét (N) có

ΔAHC nội tiếp

AC là đường kính

Do đó: ΔAHC vuông tại H

=>\(\widehat{AHC}=90^0\)

\(\widehat{AHB}+\widehat{AHC}=90^0+90^0=180^0\)

=>B,H,C thẳng hàng

=>AH\(\perp\)BC

Xét ΔNAM và ΔNHM có

NA=NH

AM=HM

NM chung

Do đó: ΔNAM=ΔNHM

=>\(\widehat{NAM}=\widehat{NHM}=90^0\)

Xét tứ giác AMHN có

\(\widehat{MAN}+\widehat{MHN}=90^0+90^0=180^0\)

=>AMHN là tứ giác nội tiếp

a:

góc BDC=góc BEC=1/2*sđ cung BC=90 độ

=>CD vuông góc AB và BE vuông góc AC

Xét ΔABC có

CD,BE là đường cao

CD cắt BE tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

c: góc BDC=góc BEC=90 độ

=>BDEC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

d: ID=IE

OD=OE

=>OI là trung trực của DE

=>OI vuông góc DE

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
26 tháng 4 2017

Em xem lại đề bài này nhé.

d. Do S, H cùng thuộc AH nên nếu S, H ,E thẳng hàng thì E phải thuộc AH. Cô có hình vẽ phản chứng:

Đường tròn c: Đường tròn qua C với tâm O Đường tròn d: Đường tròn qua N, O, C Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, N] Đoạn thẳng j: Đoạn thẳng [C, M] Đoạn thẳng k: Đoạn thẳng [A, E] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [O, E] Đoạn thẳng p: Đoạn thẳng [M, N] Đoạn thẳng q: Đoạn thẳng [A, D] B = (-0.48, 1.12) B = (-0.48, 1.12) B = (-0.48, 1.12) A = (1.14, 6.58) A = (1.14, 6.58) A = (1.14, 6.58) C = (7.38, 1.12) C = (7.38, 1.12) C = (7.38, 1.12) Điểm O: Trung điểm của g Điểm O: Trung điểm của g Điểm O: Trung điểm của g Điểm M: Giao điểm của c, f Điểm M: Giao điểm của c, f Điểm M: Giao điểm của c, f Điểm N: Giao điểm của c, h Điểm N: Giao điểm của c, h Điểm N: Giao điểm của c, h Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm E: Giao điểm của d, e Điểm E: Giao điểm của d, e Điểm E: Giao điểm của d, e Điểm D: Giao điểm của n, g Điểm D: Giao điểm của n, g Điểm D: Giao điểm của n, g Điểm S: Giao điểm của n, p Điểm S: Giao điểm của n, p Điểm S: Giao điểm của n, p