tìm giá tị lớn nhất của biểu thức để 1/x2+2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x-2013| ≥ 0 với mọi x
=> |x-2013|+2≥ 2
=>\(\frac{2016}{\left|x-2013\right|+2}\)≤ \(\frac{2016}{2}\)
=> Max A =1008
<=> x-2013=0
<=> x=2013
P=2010-(x-1)2016
Do (x-1)2016 >= 0 với mọi x
Để P đạt GTLN => (x-1)2016 phải nhỏ nhất <=> (x-1)2016=0
=> Pmax=2010 <=>x=1
Qmax=2010 giải tương tự
a) x ≠ 0 , x ≠ − 2
b) Ta có D = x 2 - 2x - 2.
c) Chú ý D = - x 2 - 2x - 2 = - ( x + 1 ) 2 - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Ủa cái biểu thức cho đó là gì vậy '-'?? Chắc là x-x2-1 ha...
Ta có: \(A=x-x^2-1=-x^2+x-1=-\left(x^2-x+1\right)\)
\(=-\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)
Vậy MaxA=-3/4 khi x=1/2
A+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy GTNN của A = -1 <=> x=-3
Tk mk nha
Để \(\frac{1}{x^2+2010}\)đạt GTLN thì \(x^2+2010\)đạt GTNN mà \(x^2\)\(\ge\)0
\(\Leftrightarrow\)\(x^2+2010\ge\)2010
\(\Rightarrow\)\(\frac{1}{x^2+2010}\le\frac{1}{2010}\)khi x = 0
Vậy \(\frac{1}{x^2+2010}\)đạt GTLN bằng \(\frac{1}{2010}\)khi x = 0
cam on ban nha