Tìm các cs a,b,c để:
a,p/s 36/ab = a+b
b,p/s 1000/a+b+c=abc
Ai làm nhanh,đúng mk k cho nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=-\left(a-b-c\right)+\left(-c+b+a\right)-\left(a+b\right)\)
\(=-a+b+c-c+b+a-a-b\)
\(=-a+b\)
= \(b-a\)
Vì a > b \(\Rightarrow b-a< 0\) \(\Rightarrow|S|=\left(-1\right).\left(b-a\right)=-b+a=a-b\)
\(\Rightarrow|S|=a-b\)
Kb mình nha!
S = -(a-b-c)+(-c+b+a)-(a+b)
= - a+b+c-c+b+a-a+b
=(-a+a-a)+(b+b-b)+(c-c)
= -a+b+0
=b-a
Vì a>b nên |S| =a-b
Chị dùg cách tính tổng đi
1. Tìm dãy cách đều bao nhiêu
2. Từ công thức tính tổng rồi suy ra
bài 1
ta có a+b = -4
=> a= -4-b
ta có b+c= -6
=> c= -6-b
ta có c+a =12
=> ( -4-b) + ( -6-b) = 12
=> -4-b - 6-b= 12
=> -10 - 2b = 12
=> -2b = -10 - 12
=> -2b = -22
=> b= 11
=> a= 4- 11= -15
=> c= 12- -15 = 17
Bài 3 : Cho a . b , tính |S| biết : S=-(-a-b-c) + (-c+b+a) - (a+b)
Đề sai ,ko bao giờ đề cho a.b vì chỉ có cộng trừ thôi .Nên đề phải là a>b
Ta có: S=-(-a-b-c) + (-c+b+a) - (a+b)
S= -a+b+c-c+b+a-a-b
S= (-a+a-a)+(b+b-b)+(c-c)
S=-a+b+0
S=b-a
Mà \(a>b\Rightarrow b-a< 0\)
\(\Leftrightarrow\left|S\right|=\left|b-a\right|=a-b\)
Vậy |S|=|b-a|=a-b
a) Ta có 36 = ab x ( a+ b )
36 = 3x12 = 2 x 18 = 36 x 1
Ta có số cần tìm là 12
b) Ta có 1000 = abc x ( a + b + c )
1000 = 125 x 8 = 250 x 4 = 500 x 2 = 200 x 5
Vậy số cần tìm là 125
Tớ nghĩ bài này là của lớp 5 bởi vì tớ lớp 5 mà. Tích nha
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{2001!}<\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2000}-\frac{1}{2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2001}=\frac{2000}{2001}<1\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1\)
\(\Rightarrow\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\right)+2<1+2\)
\(\Rightarrow1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<3\)