K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2023

Đúng mình sẽ like nha

 

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.

 

14 tháng 4 2017

Giải:

\(\overline{abcd},\overline{ab}\)\(\overline{ac}\) là các số nguyên tố

\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)

Ta có:

\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)

\(=10c+d-c=10c-c+d=9c+d\)

Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)

\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)

Ta có các trường hợp sau:

\(*)\) Nếu \(b=7\) ta có:

\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)

Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)

Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)

\(*)\) Nếu \(b=9\) ta có:

\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)

\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)

\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)

\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)

Mặt khác \(a\ne0\Rightarrow a=1\)

Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

14 tháng 4 2017

giống hệt bài giải mẫu trên mạng

16 tháng 4 2019

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

30 tháng 1 2024

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

30 tháng 1 2020

Số nguyên tố tận cùng là lẻ.
=> b=7 or b= 9
*b=7 => 42=9c+d
=> loại
=> b=9
=> 9c+d= 72
=> c = 7 vì ac là số nguyên tố.
=> d = 9
=> a = 1

21 tháng 12 2018

Ta có:

b^2=cd+b-c

<=> b(b-1)=c(c-1)

<=> b=c

Ta có abcd là số nguyên tố

=> d khác 0;2;4;6;8;5

=> d E {1;3;7;9} và c và b cũng vậy

+) d=1. 4TH

+) d=3. 4TH

+) d=7. 4TH

+) d=9. 4TH

ns chung xét 16TH nha

24 tháng 2 2020

Tìm số nguyên tố abcd,sao cho ab ac là các số nguyên tố,b^2 = cd + b - c,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

hok tốt 

Link này nè bạn:

https://olm.vn/hoi dap/detail/54265377038.html

Chúc bạn học tốt

~_Forever_~