Chứng minh rằng: \(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\)
Dấu "=" xảy ra khi nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
Em mới hc lớp 7 nên chỉ chứng minh cái phần dấu bằng xảy ra khi nào thui. Ko biết có đúng ko
Theo đề bài Ta có
\(\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(ac+bd\right)^2=\left(a^2+b^2\right)^2=\left(c^2+d^2\right)^2\)
Suy ra \(ac=a^2,bd=b^2,ac=b^2\)
Suy ra \(a=b=c=d\)
Vậy dấu bằng xảy ra khi \(a=b=c=d\)
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
a2(1+b2) + b2(1+c2) + c2(1+a2) = a2 + a2b2 + b2 + b2c2 + c2 + a2c2
Áp dụng bất đẳng thức Cô si cho 6 số không âm a2, a2b2, b2, b2c2, c2, a2c2 ta được:
a2 + a2b2 + b2 + b2c2 + c2 + a2c2 >= 6\(\sqrt{a^6b^6c^6}\)= 6abc
=> a2(1+b2) + b2(1+c2) + c2(1+a2) >= 6abc
Dấu = xảy ra khi
a2=a2b2=b2=b2c2=c2=a2c2
a=b=c=+-1
Áp dụng BĐT Cauhy-Schwarz ta có:
\(VT=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\ge\left(\sqrt{\left(ax\right)^2}+\sqrt{\left(by\right)^2}+\sqrt{\left(cz\right)^2}\right)^2\)
\(=\left(ax+by+cz\right)^2=VP\) (đúng)
Đẳng thức xảy ra khi \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
b: \(A=\dfrac{x^2+4+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\dfrac{1}{\sqrt{x^2+4}}>=2\sqrt{\sqrt{x^2+4}\cdot\dfrac{1}{\sqrt{x^2+4}}}=2\)
a: =>ab+ad+bc+cd>=ab+cd+2căn abcd
=>ad+cb-2căn abcd>=0
=>(căn ad-căn cb)^2>=0(luôn đúng)
Ta có:\(\left(ad-cb\right)^2\ge0\)
\(\Leftrightarrow a^2d^2-2adcb+c^2d^2\ge0\)\(\Leftrightarrow a^2b^2-a^2b^2+c^2d^2-c^2d^2+a^2d^2-2adbc+c^2b^2\ge0\)\(\Leftrightarrow a^2b^2+a^2d^2+c^2d^2+c^2b^2-a^2b^2-2adcb-c^2d^2\ge0\)\(\Leftrightarrow\left(a^2+c^2\right)\left(b^2+d^2\right)-\left(ab+cd\right)^2\ge0\) \(\Leftrightarrow\left(a^2+c^2\right)\left(b^2+a^2\right)\ge\left(ab+ca\right)^2\)\(\Leftrightarrow\left(ab+ca\right)^2\le\left(a^2+c^2\right)\left(b^2+a^2\right)\)\(\left(dpcm\right)\)
Ta có BĐT \(\Leftrightarrow\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+ac+bd+dc\)
\(\Leftrightarrow ac+bd\ge2\sqrt{abcd}\) (luôn đúng theo AM-GM)
p/s: mà cái BĐT bn cần chứng minh đó chính là BĐT Bunyakovsky đấy ^.^
\(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\Leftrightarrow\left|ab+cd\right|^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
Áp dụng bất đẳng thức bunhiacopxki ta suy ra:
Dấu "=" xảy ra <=> ad=bc