Cho hình thang ABCD có góc BAD=120 độ.Gọi M là 1 điểm nằm trên cạnh AB hai đường thẳng DM và BC cắt nhau tại N,CN cắt AN tại E.
C/m:A,tam giác AHD đồng dạng với tam giác CDN và AD^2=AM.CN
B,tam giác AME đồng dạng vs tam giác CMB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ABCD là hình vuông
=>AE là phân giác của góc BAD
=>góc ABE=góc DAE=45 độ
Xét ΔABE và ΔABD có
góc ABE chung
góc ADE=góc ABE=45 độ
=>ΔABE đồng dạng với ΔDBA
=>AB/BD=BE/AB
=>AB^2=BD*BE
b: góc EBM=góc MBA+góc ABE=135 độ
góc NDB=góc NDA+góc ADB=135 độ
=>góc EBM=góc NDB
Xét ΔBEM và ΔDNB có
góc EBM=góc NDB
góc BEM=góc DNB
=>ΔBEM đồng dạng với ΔDNB
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.