K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)\(\left(1+\frac{1}{3}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)

\(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}=-\frac{1}{2}\)

tôi xem sex

7 tháng 3 2018

51/2* 52/2* ....*100/2 = [ 51*53*55*..*99 ]*[52*54*56*...*100]/2^50 
= [ 51*53*55*..*99 ]*[26*27*28*...*50]*2^25/2^50 
= [ 51*53*55*..*99 ]*[27**29*...*49]*[26*28*30*..50)/2^25 
tiếp tục phân tích 26*28*30*..50 / 2^25 sẽ suy ra kết quả

hok tốt

7 tháng 3 2018

đừng hỏi nữa thằng ngu

24 tháng 1

T_T

24 tháng 8 2018

Ta có:
(1+1/3+1/5+...+1/99) - (1/2+1/4+1/6+...+1/100)
= (1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100...-2(1/2+1/4+1/6+...+1/100) (tức là ta tự cộng thêm vào dấu ngoặc đầu 1/2+1/4+1/6+...+1/100 thì phải trừ bớt ra 1/2+1/4+1/6+...+1/100 do đó ta ghép vào dấu ngoặc sau nên thêm vào số 2 đằng trước dấu ngoặc sau )
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100...- (1+1/2+1/3+...+1/50) (ta nhân phân phối số 2 vào ngoặc sau làm các mẫu giảm 2 lần)
=1/51+1/52+1/53+...+1/100 (đpcm)

24 tháng 1

T_T

15 tháng 4 2017

44444444444444444444444444444444444444444

15 tháng 4 2017

ngu vảy 

19 tháng 5 2020

Ôi ***** :)) bạn thêm vào cho mình mấy từ ạ :<< cop xg mà nó mất chữ :((
Dòng thứ nhất : Ta có : A = ...

Dòng mà B = .... thêm vào : Lại có B = ....

Dòng gần cuối : Như vậy ta có A/B = ....

8 tháng 10 2018

Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

             \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

              \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

             \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

              \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

              \(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)

    \(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)

\(\Rightarrow\) \(B⋮A\)