cho \(\Delta HIK\) cân tại H ,\(\widehat{IHK}=108^o\). Trên tia phân giác \(\widehat{HIK}\)lấy điểm N sao cho \(\widehat{IKN}=12^o\). Hãy so sánh KN và KH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
) Trên tia đối của tia HI lấy điểm D sao cho ID=IK.
=> IDN= IKN (c.g.c)=> ND=NK (*)và = =120.
Tam giác HIK có = =360. Suy ra = 1080. Mà góc DHK kề bù với góc IHK nên = 720.(1)
Tam giác IDK có ID=IK ( theo cách vễ điểm D) => Tam giác IDK là tam giác cân, lại có góc DIK =360, nên có = =720.(2)
Từ (1) và (2) =>DKDH cân tại K => KD=KH (3)
Mặt khác, = 720 – 120 = 600 (**)
Từ (*) và (**)=>DKDN là tam giác đều => KD=KN (4)
Xét tam giác ABC có : \(\widehat{HIK}+\widehat{HKI}+\widehat{IHK}=180^0\) (Định lí tổng 3 góc trong tam giác)=> \(\widehat{IHK}=108^0\)
Xét tam giác ABC có \(\widehat{HIK}< \widehat{IHK}\left(36^0< 108^0\right)\)
=> \(HK< IK\) (Quan hệ giữa góc và cạnh đối diện) (1)
Vì \(IN\)là tia p/g \(\widehat{HIK}\) => \(\widehat{NIH}=\frac{\widehat{HIK}}{2}=\frac{36^0}{2}=18^0\)
Xét tam giác INK có \(\widehat{INK}< \widehat{NIK}\left(12^0< 18^0\right)\)
=> \(IK< NK\) (Quan hệ giữa góc và cạnh đối diện) (2)
Từ 1,2 => \(HK< IK< KN\)
hay\(KH< KN\)
Tham khảo
Avt của em là Hinata , tình yêu của Hinata là Naruto , hỏi Naruto í :))))
rên tia đối của tia HI lấy điểm D sao cho ID=IK.
=> IDN= IKN (c.g.c)=> ND=NK (*)và = =120.
Tam giác HIK có = =360. Suy ra = 1080. Mà góc DHK kề bù với góc IHK nên = 720.(1)
Tam giác IDK có ID=IK ( theo cách vễ điểm D) => Tam giác IDK là tam giác cân, lại có góc DIK =360, nên có = =720.(2)
Từ (1) và (2) =>DKDH cân tại K => KD=KH (3)
Mặt khác, = 720 – 120 = 600 (**)
Từ (*) và (**)=>DKDN là tam giác đều => KD=KN (4)
Vẽ hình ( không được chính xác cho lắm thông cảm ) :
Ta có :
\(\widehat{NIK}< \widehat{HIK}\) ( vì \(\frac{\widehat{HIK}}{2}=\widehat{NIK}\) )
\(\Rightarrow\)\(KN< KH\)
Vậy \(KN< KH\)
k hiểu