K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

ủng hộ mk nha mọi người

22 tháng 5 2018

Bạn tự vẽ hình nha

Câu a

Chứng minh : Kẻ OC cắt BD tại E

Xét ΔCAO và ΔEBO có :

ˆA=^OBE (=1v)

AO=BO (gt)

^COA=^BOE (đối đỉnh)

⇒ΔCAO=ΔEBO (cgv - gn )

⇒OC=OE ( hai cạnh tương ứng )

và AC=BE ( hai cạnh tương ứng )

Xét ΔOCD và ΔOED có :

OC=OE (c/m trên )

^COD=^DOE ( = 1v )

OD chung

⇒ΔOCD=ΔOED (cgv - cgv )

⇒CD=DE (hai cạnh tương ứng )

mà DE = BD + BE

và AC = BE ( c/m trên )

⇒CD=AC+BD

7 tháng 4 2020

ai chơi ngọc rồng onlie ko cho mk xin 1 nick

7 tháng 4 2020

a) Vẽ tia CO cắt tia đối của tia By tại E

Xét tam giác vuông AOC và tam giác vuông BOE có : 

AO = OB ( gt ) 

AOC = BOE ( 2 góc đối đỉnh ) 

\(\implies\)  tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn ) 

\(\implies\) AC = BE ( 2 cạnh tương ứng ) 

Xét tam giác vuông DOC và tam giác vuông DOE có : 

OD chung 

OC = OE ( tam giác vuông AOC = tam giác vuông BOE ) 

\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông ) 

\(\implies\) CD = ED ( 2 cạnh tương ứng ) 

Mà ED = EB + BD 

\(\implies\) ED = AC + BD 

\(\implies\) CD = AC + BD 

b) Xét tam giác DOE vuông tại O có : 

OE2 + OD2 = DE2 ( Theo định lý Py - ta - go ) 

 Xét tam giác BOE vuông tại B có : 

OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * ) 

 Xét tam giác BOD vuông tại B có : 

OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )

Cộng ( * ) với ( ** ) vế với vế ta được : 

OE2 + OD2 = 2. OB2 + EB2 + DB2 

Mà OE2 + OD2 = DE2 ( cmt ) 

\(\implies\) DE2 = 2. OB2 + EB2 + DB2 

                 = 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE ) 

                 = 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE 

                 = 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE 

                 = 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE  

                 = 2. OB2 + DE2 - 2 . BD . BE  

\(\implies\) 2. OB2 - 2 . BD . BE = 0 

\(\implies\) 2. OB2 = 2 . BD . BE

\(\implies\) OB2 = BD . BE 

Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt ) 

\(\implies\) AC . BD = ( AB / 2 )2 

\(\implies\) AC . BD = AB2 / 4 

1: Xét tứ giác ACBD có

AC//BD

AC=BD

=>ACBD là hbh

=>O là trung điểm chung của AB và CD

2: Xét tứ giác AEBF có

AF//BE

AF=BE

=>AEBF là hbh

=>O là trung điểm của EF

1:Gọi giao của DO và CB là H

Xét ΔOAD vuông tại A và ΔOBH vuông tại B có

OA=OB

góc AOD=góc BOH

=>ΔOAD=ΔOBH

=>OD=OH

=>ΔCDH cân tại C

=>ΔAOD đồng dạng với ΔBOH

Xét ΔBOH vuông tại B và ΔOCH vuông tại O có

góc BHO chung

=>ΔBOH đồng dang với ΔOCH

=>ΔAOD đồng dạng với ΔOCH

2: ΔCHD cân tại C

=>góc CDH=góc CHD=góc ADH

=>DH là phân giác của góc ADC

28 tháng 3 2023

Cảm ơn bạn nha 

a: Xét tứ giác ACBD có 

AC//BD

AC=BD

Do đó: ACBD là hình bình hành

Suy ra: AD=BC

b: Ta có: ACBD là hình bình hành

nên AD//BC

c:

Ta có: CE+EB=CB

FD+AF=AD

mà CB=AD

và CE=FD

nên EB=AF

Xét tứ giác EBFA có 

EB//AF

EB=AF

Do đó: EBFA là hình bình hành

Suy ra:EF và BA cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của AB

nên O là trung điểm của FE

2 tháng 5 2018

A B x y O C D M

a) Xét \(\Delta\)CAO và \(\Delta\)OBD: ^CAO=^OBD=900; ^AOC=^BDO (Cùng phụ ^BOD)

=> \(\Delta\)CAO ~ \(\Delta\)OBD (g.g) => \(\frac{AC}{BO}=\frac{AO}{BD}\Rightarrow AO.BO=AC.BD\)

\(\Rightarrow\frac{1}{2}AB.\frac{1}{2}AB=AC.BD\Leftrightarrow\frac{1}{4}AB^2=AC.BD\)

\(\Leftrightarrow AB^2=4.AC.BD\)(đpcm)

b) Ta có: \(\Delta\)CAO ~ \(\Delta\)OBD (cmt) => \(\frac{AC}{OB}=\frac{OC}{OD}\) hay \(\frac{AC}{OA}=\frac{OC}{OD}\) (Do OA=OB)

=> \(\frac{AC}{OC}=\frac{OA}{OD}\)=> \(\Delta\)CAO ~ \(\Delta\)COD (Cạnh huyền cạnh góc vuông)

=> ^ACO=^OCD hay ^ACO=^MCO => \(\Delta\)CAO=\(\Delta\)CMO (Cạnh huyền góc nhọn)

=> AC=CM (đpcm).

6 tháng 4 2019

O A B C D I M H K

6 tháng 4 2019

Xét \(\Delta OAC\)và \(\Delta DBO\)có :

\(\widehat{CAO}=\widehat{DBO}\left(=90^o\right)\)\(\widehat{COA}=\widehat{ODB}\)( cùng phụ \(\widehat{DOB}\))

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DBO\)( g . g )

\(\Rightarrow\)\(\frac{OA}{BD}=\frac{AC}{BO}\) \(\Rightarrow\)OA . OB = BD . AC \(\Rightarrow\)AB2 = 4BD . AC

b) \(\Delta OAC\)\(\Delta DBO\)(g.g) \(\Rightarrow\)\(\frac{AC}{AO}=\frac{OC}{OD}\)

xét \(\Delta OAC\)và \(\Delta DOC\)có : \(\frac{AC}{AO}=\frac{OC}{OD}\)\(\widehat{CAO}=\widehat{COD}=90^o\)

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DOC\)(c.g.c) \(\Rightarrow\)\(\widehat{ACO}=\widehat{OCD}\)

xét \(\Delta OAC\)và \(\Delta MCO\)có : \(\widehat{ACO}=\widehat{OCD}\); CO ( chung )

\(\Rightarrow\)\(\Delta ACO=\Delta MCO\left(ch-gn\right)\)\(\Rightarrow\)CA = CM ; OA = OM ; 

c) OC là đường trung trực AM \(\Rightarrow\)OC \(\perp\)AM

Mặt khác : OA = OB = OM \(\Rightarrow\)\(\Delta AMB\)vuông tại M

\(\Rightarrow\)OC // BM

gọi gđ BM với AC là I

\(\Delta ABI\)có OC đi qua trung điểm AB và OC // BI \(\Rightarrow\)IC = AC

gọi K là gđ BC với MH

MH // AI \(\Rightarrow\)\(\frac{MK}{IC}=\frac{BK}{BC}=\frac{KH}{AC}\) \(\Rightarrow\)BK = KH 

\(\Rightarrow\)BC đi qua trung điểm MH

d) tứ giác ABDC là hình thang vuông \(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\)

Ta có : \(AC+BD\ge2\sqrt{AC.BD}=AB\)

\(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\ge\frac{1}{2}.AB^2\)

Dấu " = " xảy ra \(\Leftrightarrow\)AC = BD = \(\frac{AB}{2}=OA\)

Vậy C thuộc Ax và cách A 1 khoảng bằng OA