K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Trong toán tuổi thơ có bài này =))))

Do vai trò bình đẳng khi hoán vị vòng quanh các số x,y,z trong bài toán. Nên ta co thể giả sử \(x\ge z,y\ge z\).Ta có: \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)

\(=\frac{x^2-y^2+y^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)

\(=\left(x^2-y^2\right)\left(\frac{1}{y+z}-\frac{1}{x+y}\right)\)

\(=\frac{\left(x+y\right)\left(x-y\right)^2}{\left(y+z\right)\left(z+x\right)}+\frac{\left(y^2-z^2\right)\left(x-z\right)}{\left(y+z\right)\left(x+y\right)}\ge0\)

Đẳng thức xảy ra khi và chỉ khi x = y = z

1 tháng 6 2019

xD

Có: \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)(1)

\(=\frac{\left(x-z\right)\left(x+z\right)}{y+z}+\frac{\left(y-x\right)\left(x+y\right)}{z+x}+\frac{\left(z-y\right)\left(y+z\right)}{x+y}\)

\(\left(1\right)=S_1\left(x-z\right)^2+S_2\left(y-x\right)^2+S_3\left(z-y\right)^2\)

Trong đó:

\(\hept{\begin{cases}S_1=\frac{x+z}{\left(y+z\right)\left(x-z\right)}\\S_2=\frac{x+y}{\left(z+x\right)\left(y-x\right)}\\S_3=\frac{y+z}{\left(x+y\right)\left(z-y\right)}\end{cases}}\)

Giả sử: \(x\ge y\ge z\)( x,y,z lớn hơn 0)

Có: \(S_1=\frac{x+z}{\left(y+z\right)\left(x-z\right)}\ge0\)

Xét: \(S_1+S_2=\frac{x+z}{\left(y+z\right)\left(x-z\right)}-\frac{x+y}{\left(x+z\right)\left(x-y\right)}=\frac{\left(x+z\right)^2+\left(x+y\right)\left(y+z\right)^2+\left(y+z\right)\left(y-z\right)\left(2x+y+z\right)}{.....}\ge0\)

Xét tiếp \(S_1+S_3\)là xong

Không biết đúng k tại mình hơi yếu

1 tháng 6 2019

*Nếu được giả sử như bạn Cà Bùi thì bài làm của em như sau,mong mọi người góp ý ạ!

Ta có: \(VT=\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}-\frac{x^2-z^2+y^2-x^2}{x+y}\)

\(=\left(x^2-z^2\right)\left(\frac{x+y-y-z}{\left(x+y\right)\left(y+z\right)}\right)+\left(y^2-x^2\right)\left(\frac{x+y-z-x}{\left(z+x\right)\left(x+y\right)}\right)\) (nhóm các số thích hợp + quy đồng)

\(=\frac{\left(x+z\right)\left(x-z\right)^2}{\left(x+y\right)\left(y+z\right)}+\frac{\left(y-x\right)\left(y-z\right)}{\left(z+x\right)}\)

Do a, b, c có tính chất hoán vị, nên ta giả sử y là số lớn nhất. Khi đó vế trái không âm hay ta có đpcm.

4 tháng 11 2017

vì x+y+z=1nên

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)

nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)

\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)

dau = xay ra khi x=y=z=1/3

27 tháng 12 2016

Bằng =0 

nếu cần chi tiết xẽ có

28 tháng 12 2016

cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html

22 tháng 1 2016

\(\Leftrightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\)
\(\Leftrightarrow\frac{x\left(x+y\right)-xy}{x+y}+\frac{y\left(y+z\right)-yz}{y+z}+\frac{z\left(z+x\right)-xz}{z+x}\ge\frac{x+y+z}{2}\)
\(\Leftrightarrow x+y+z-\frac{xy}{x+y}-\frac{yz}{y+z}-\frac{xz}{z+x}\ge\frac{x+y+z}{2}\)
\(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{zx}{z+x}\le\frac{x+y+z}{2}\)
\(x+y\ge2\sqrt{xy}\Rightarrow\frac{xy}{x+y}\le\frac{xy}{2\sqrt{xy}}=\frac{\sqrt{xy}}{2}\le\frac{x+y}{4}\)
tương tự rồi cộng vế với vế suy ra đpcm


 

24 tháng 2 2020

Trước hết ta chứng minh bổ đề sau đây: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{9\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\). Đặt P = VT - VP.

(đây là phân tích của một người khác, không phải của em)

Do đó \(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{9\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}=\frac{27}{\sqrt{\left(x+y+z\right)^2.\left(x+y+z\right)^2}}\)

\(\ge\frac{27}{\sqrt{3\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}}=\frac{9}{x+y+z}\)

Đẳng thức xảy ra khi x = y = z = 1

P/s: Em không chắc lắm!

3 tháng 6 2020

Theo giả thiết: \(x^2+y^2+z^2=3\Rightarrow2\left(xy+yz+zx\right)=\left(x+y+z\right)^2-3\)

Theo BĐT Bunyakovsky dạng phân thức, ta có:

\(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x^2}{xy}+\frac{y^2}{yz}+\frac{z^2}{zx}\)\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\)

Đến đây, ta cần chỉ ra rằng \(\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\ge\frac{9}{x+y+z}\)(*)

Ta có: \(xy+yz+zx>0\Leftrightarrow\left(x+y+z\right)^2\ge x^2+y^2+z^2=3\)

\(\Rightarrow x+y+z>\sqrt{3}\)

Đặt \(x+y+z=t>\sqrt{3}\). Khi đó (*) trở thành \(\frac{2t^2}{t^2-3}\ge\frac{9}{t}\Leftrightarrow\frac{\left(t-3\right)^2\left(2t+3\right)}{t\left(t^2-3\right)}\ge0\)(đúng với mọi \(t>\sqrt{3}\))

Đẳng thức xảy ra khi \(t=3\)hay x = y = z = 1

16 tháng 5 2020

\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

27 tháng 6 2020

\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)

20 tháng 8 2020

Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)

Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)

Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)

Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng

Như vậy (3),(4) đúng => (2) đúng

Từ đó suy ra \(T\ge\frac{4}{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)