X1 + X2 = 5.10-7
X1 . X2 = 4,4 . 10-14
Ai chỉ mình cách tìm x1 x2 với mình quên mất rồi .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của ミ★ηɠυүễη ʋăη ɦưηɠ ²ƙ⁸★彡⁀ᶦᵈᵒᶫ - Toán lớp 6 - Học toán với OnlineMath
dạ mình cám ơn ạ nma cho mình hỏi chút cái chỗ 2x1+x2=3 và x1+x2= gì v ạ
â) thay m = 6 và phương trình ta đc
\(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b.
Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
Pt có 2 nghiệm dương khi \(m>0\)
\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)
\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow5m+2m\sqrt{m}=36\)
Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)
\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)
\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)
\(\Rightarrow m=4\)
Theo hệ thức Vi - ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1}{x_2} = m - 7 \end{array} \right.\)
Theo đề bài, ta có: \({x_1} - {x_2} = 3\)
Từ đó ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1} - {x_2} = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = m + 2\\ {x_2} = m - 1 \end{array} \right.\)
Với giá trị trên, ta có:
\(\begin{array}{l} \left( {m + 2} \right)\left( {m - 1} \right) = m - 7\\ \Leftrightarrow {m^2} + m - 2 = m - 7\\ \Leftrightarrow {m^2} = - 5 \end{array}\)
Vậy không có giá trị $m$ thỏa mãn
x2 - (2m + 1)x + m - 7 = 0
Có: \(\Delta\) = [-(2m + 1)]2 - 4.1.(m - 7) = 4m2 + 4m + 1 - 4m + 28 = 4m2 + 29 > 0
\(\Rightarrow\) x1 = \(\dfrac{2m+1+\sqrt{\Delta}}{2}\); x2 = \(\dfrac{2m+1-\sqrt{\Delta}}{2}\)
Lại có: x1 - x2 = 3
\(\Leftrightarrow\) \(\dfrac{2m+1+\sqrt{\Delta}-2m-1+\sqrt{\Delta}}{2}=3\)
\(\Leftrightarrow\) 2\(\sqrt{\Delta}\) = 6
\(\Leftrightarrow\) \(\sqrt{\Delta}\) = 3
\(\Leftrightarrow\) \(\Delta\) = 9
\(\Leftrightarrow\) 4m2 + 29 = 9
\(\Leftrightarrow\) m2 = -5 (Vô nghiệm)
Vậy không có giá trị m nào thỏa mãn đk
Chúc bn học tốt!
\(pt:3x^2-4x+m+5=0\\ \Delta'=2^2-3\left(m+5\right)=4-3m-15=-3m-11\)
pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow-3m-11>0\Leftrightarrow m< \dfrac{-11}{3}\)
Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{3}\\x_1x_2=\dfrac{m+5}{3}\end{matrix}\right.\)
Theo đề bài ta có:
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=-\dfrac{4}{7}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=-\dfrac{4}{7}\Leftrightarrow\dfrac{\dfrac{4}{3}}{\dfrac{m+5}{3}}=-\dfrac{4}{7}\Leftrightarrow\dfrac{4}{3}=\dfrac{-4m-20}{21}\Rightarrow m=-12\left(N\right)\)
\(\Delta'=4-3\left(m+5\right)=-3m-11\)
Phương trình có 2 nghiệm pb khi \(\Delta'>0\Leftrightarrow-3m-11>0\Rightarrow m< -\dfrac{11}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{3}\\x_1x_2=\dfrac{m+5}{3}\end{matrix}\right.\)
Để biểu thức đề bài xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne-5\)
Khi đó:
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=-\dfrac{4}{7}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=-\dfrac{4}{7}\)
\(\Rightarrow7\left(x_1+x_2\right)=-4x_1x_2\)
\(\Leftrightarrow7.\dfrac{4}{3}=-4\left(\dfrac{m+5}{3}\right)\)
\(\Rightarrow m=-12\) (t/m)
Vd: X1 + X2 = A => X1 = A - X2 xong thay nó vào pt còn lại là xong
X1.X2 = B
cho mình nhé!!!