Biết n!=1.2.3...n \(\left(n\inℕ^∗;n\ge2\right)\)và \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+......+\frac{2014}{2015!}\)
Hãy so sánh A với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F có 0 phần tử vì n=0,5 không thuộc N
G có vô số phần tử vì G là tập hợp của mọi số chẵn
\(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)
\(Q=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)
\(Q=3n^3+9n^2+15n+9\)
\(Q=3n\left(n^2+5\right)+9\left(n^2+1\right)\)
mà \(\left\{{}\begin{matrix}9\left(n^2+1\right)⋮9\\3n⋮3\\n^2+5⋮3\end{matrix}\right.\left(\forall n\inℕ^∗\right)\)
\(\Rightarrow Q=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9,\forall n\inℕ^∗\)
\(\Rightarrow dpcm\)
\(Tacó\)
\(13\equiv1\left(mod4\right)\Rightarrow13^n\equiv1\left(mod4\right)\)
\(\Rightarrow\left(13^n+3\right)⋮4\Leftrightarrow13^n\left(13^n+3\right)\left(13^n+4\right)\left(13^n+1\right)⋮4\left(đpcm\right)\)
Vì n \(\in\) N nên 13n lẻ \(\Rightarrow\) 13n + 3 và 13n + 1 đều chẵn \(\Rightarrow\) (13n + 3) . (13n + 1) \(⋮\) 4 \(\Rightarrow\) 13n . (13n + 3) . (13n + 4) . (13n + 1) \(⋮\) 4
A đâu !!
anh cũng đang định hỏi câu này