Tìm tất cả các số nguyên n để 6n+9/3n là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 6n+1/3n là số tự nhiên thì 6n+1 chia hết 3n
ta có: 6n+1 chia hết 3n ; 3n chia hết 3n
=> (6n+1) -3nchia hết 3n
=>(6n+1)- 2(3n)chia hết 3n
=>6n+1-6n chhia hết 3n
=>1 chia hết 3n
=>3n e Ư(1)={1,-1}
=>n =1/3;-1/3(loại vì ko phảỉ số nguyên
Vậy ko có giá trị n
b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố
n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3
Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.
Vậy với n = 0 thì 3n + 6 là số nguyên tố.
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
\(3n+6⋮3\)
Số nguyên tố duy nhất chia hết cho 3 là 3
\(\Rightarrow3n+6=3\Leftrightarrow3n=-3\Leftrightarrow n=-1\) . Vậy n=1
Mình thiếu, -1 không là số tự nhiên nên không có số n nào thoả mãn đề bài
\(6n+5\)\(⋮\)\(3n+2\)
\(\Leftrightarrow\)\(2\left(3n+2\right)+1\)\(⋮\)\(3n+2\)
Ta thấy \(2\left(3n+2\right)\)\(⋮\)\(3n+2\)
nên \(1\)\(⋮\)\(3n+2\)
\(\Rightarrow\)\(3n+2\)\(\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta lập bảng sau:
\(3n+2\) \(-1\) \(1\)
\(n\) \(-1\) \(-\frac{1}{3}\)
Vì \(n\) là số tự nhiên nên \(n=\Phi\)
suy ra : 6n + 4 +1 chia hết cho 3n +2 ; suy ra 1 chia hết cho 3n+2 ( vì 6n +4 chia hết cho 3n+2 ) ; mà 3n + 2 lớn hơn hoặc bằng 2 nên n thuộc rỗng
\(\frac{6n+9}{3n}=2+\frac{9}{3n}=2+\frac{3}{n}\in N\)
=> \(n\inƯ\left(3\right)=\left\{1;3\right\}\)