cho xy=11
\(x^2y+xy^2+x+y=2010\)
tính S=\(x^3+y^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2y+xy^2+x+y=2010\)
\(\Rightarrow xy\cdot\left(x+y\right)+x+y=2010\)
\(\Rightarrow\left(xy+1\right)\cdot\left(x+y\right)=2010\)
Với : \(xy=11\)
\(\Rightarrow x+y=\dfrac{2010}{12}=\dfrac{335}{2}\)
\(C=x^2+y^2=\left(x+y\right)^2-2xy=\left(\dfrac{335}{2}\right)^2-2\cdot11=\dfrac{112137}{4}\)
Ta có: \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2010\)
\(\Leftrightarrow x+y=\dfrac{2010}{11+1}=\dfrac{2010}{12}=\dfrac{335}{2}\)
Ta có: \(C=x^2+y^2\)
\(=\left(x+y\right)^2-2xy\)
\(=\left(\dfrac{335}{2}\right)^2-2\cdot11\)
\(=\dfrac{112137}{4}\)
\(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+x+y=2010\)
\(\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2010\)
\(\Leftrightarrow\left(x+y\right)\left(11+1\right)=2010\)
\(\Leftrightarrow x+y=\frac{2010}{11+1}=\frac{332}{5}\)
Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=\left(\frac{332}{5}\right)^2-2.11=\frac{112137}{4}\)
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
Trả lời :
Ta có :
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
Hok tốt
a) \(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y+2\right)\left(x+y+5\right).\)
b) \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)
\(\Leftrightarrow12\left(x+y\right)=2010\)
\(\Leftrightarrow x+y=\frac{335}{2}\)
\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)
Vậy \(x^2+y^2=\frac{112137}{4}.\)
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
Biết xy=11 và x2y+xy2+x+y=2010.Tính x2+y2
ta có:x2y+xy2+x+y=2010
<=>xy(x+y)+x+y=2010
<=>(x+y)(xy+1)=2010
<=>x+y=167,5
<=>(x+y)2=x2+y2+2xy=28056,25
<=>x2+y2=28056,25-22=28034,25
a: \(\Leftrightarrow\left(x,y-3\right)\in\left\{\left(1;15\right);\left(3;5\right);\left(5;3\right);\left(15;1\right);\left(-1;-15\right);\left(-3;-5\right);\left(-5;-3\right);\left(-15;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(1;18\right);\left(3;8\right);\left(5;6\right);\left(15;4\right);\left(-1;-12\right);\left(-3;-2\right);\left(-5;0\right);\left(-15;2\right)\right\}\)
ta có : \(x^2y+xy^2+x+y=2010\)(1)
\(\Leftrightarrow xy\times\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow\)( xy + 1 ) ( x + y ) = 2010
mà xy=11 \(\Rightarrow\)xy+1=12
(1)\(\Leftrightarrow\)12 (x + y ) = 2010
\(\Leftrightarrow\)x + y = 167,5
lại có S\(=x^3+y^3\)
S \(=\left(x+y\right)^3-3xy\left(x+y\right)\)
S\(=167,5^3-3\times11\times167,5\)
S \(=\)4693894,375