Cho A =n+1/n-2 .C/M A là p/s tối giản
GIÚP MIK VS MIK CẦN NGAY VÀ LUÔN
AI LÀM ĐC MIK TICK CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(A=\frac{2n+7}{n+2}=\frac{2.\left(n+2\right)+3}{n+2}\)
\(=\frac{2.\left(n+2\right)}{n+2}+\frac{3}{n+2}\)
\(=2+\frac{3}{n+2}\)
Để A là phân số tối giản thì \(2+\frac{3}{n+2}\)tối giản.
=> \(\frac{3}{n+2}\)tối giản
vậy \(3⋮n+2\)
Vậy \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
ĐÚNG 100%
Sửa: CMR \(\dfrac{a^3+c^3+m^3}{b^3+d^3+n^3}=\left(\dfrac{a+c-m}{b+d-n}\right)^3\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{m}{n}=k\Rightarrow a=kb;c=kd;m=kn\)
\(\dfrac{a^3+c^3+m^3}{b^3+d^3+n^3}=\dfrac{k^3b^3+k^3d^3+k^3n^3}{b^3+d^3+n^3}=\dfrac{k^3\left(b^3+d^3+n^3\right)}{b^3+d^3+n^3}=k^3\)
\(\left(\dfrac{a+c-m}{b+d-m}\right)^3=\left(\dfrac{kb+kd-kn}{b+d-n}\right)^3=\left(\dfrac{k\left(b+d-n\right)}{b+d-n}\right)^3=k^3\)
\(\Rightarrow\dfrac{a^3+c^3+m^3}{b^3+d^3+n^3}=\left(\dfrac{a+c-m}{b+d-n}\right)^3\left(=k^3\right)\)
a) \(a_n=\frac{\left(1+n\right).n}{2}\)
\(a_{n+1}=\frac{\left(2+n\right)\left(1+n\right)}{2}\)
b) \(a_n+a_{n+1}=\frac{\left(1+n\right).n}{2}+\frac{\left(2+n\right)\left(1+n\right)}{2}\)
\(=\left(1+n\right)\left(\frac{n}{2}+\frac{2+n}{2}\right)=\left(1+n\right)\left(1+n\right)=\left(1+n\right)^2\) là số chính phương.