K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Gọi d là USC của (n+1; 2n+3)

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\) <=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)<=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

<=> [(2n+3)-(2n+2)]\(⋮\)d <=> 1\(⋮\)d => d=1

Vậy USCLN của (n+1; 2n+3) là 1 => số có dạng \(\frac{n+1}{2n+3}\)là phân số tối giản

9 tháng 3 2021

Đặt \(n+1;2n+3=d\)

\(n+1⋮d\Rightarrow2n+2\)(1)

\(2n+3⋮d\)(2)

Lấy 2 - 1 ta có : 

\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm

6 tháng 1 2022

Giải:

Gọi  ƯCLN (2n+3;3n+5)=d

Ta có:

2n+3:d =>3. (2n+3):d

3n+5:d=> 2. (3n+5):d

=> [3. (2n+3) - 2.(3n+5)]:d

=>(6n+9 - 6n-10): d

=> -1:d

=> d={1,-1}

Tick mình nha

6 tháng 1 2022

cảm ơn bạn

 

Gọi d=ƯCLN(3n+10;n+3)

=>3n+10-3n-9 chiahết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

12 tháng 8 2019

Gọi Ư C L N 2 n + 3 ; 3 n + 5 = d .

Ta có:

2 n + 3 ⋮ d ⇒ 3. 2 n + 3 ⋮ d 3 n + 5 ⋮ d ⇒ 2. 3 n + 5 ⋮ d ⇒ 3. 2 n + 3 − 2. 3 n + 5 ⋮ d ⇒ 6 n + 9 − 6 n − 10 ⋮ d ⇒ − 1 ⋮ d ⇒ d ∈ 1 ; − 1

14 tháng 2 2019

Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.

Gọi \(d\)là \(GTLN\left(n+1;2n+3\right)\)\(\left(d\inℕ^∗\right)\)

Ta có: \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

Do đó \(\frac{n+1}{2n+3}\)là phân số tối giản với mọi giá trị \(n\inℤ\)

hok tốt!!