cho các sỗ thực x,y thỏa mãn x+y =2 tìm gtnn của biểu thức Q=\(x^3+y^3+x^2+y^2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
30 tháng 6 2023
Lời giải:
$A=(x+y)(x^2-xy+y^2)+x^2+y^2=2(x^2-xy+y^2)+x^2+y^2=2(x^2+y^2)+(x-y)^2$
$\geq 2(x^2+y^2)=(1^2+1^2)(x^2+y^2)\geq (x+y)^2=2^2=4$ (theo BĐT Bunhiacopxky)
Vậy $A_{\min}=4$. Giá trị này đạt tại $x=y=1$
\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)+x^2+y^2\) (1)
\(\left(x+y\right)^2=2^2\) <=> \(x^2+2xy+y^2=4\) <=> \(x^2+y^2=4-2xy\)(2)
Thay 2 vào 1 ta được : \(Q=2\left(4-3xy\right)+4-2xy=12-8xy\)
Theo bđt côsi ta có : \(x+y\ge2\sqrt{xy}\) => \(2\ge2\sqrt{xy}\) => \(xy\le1\)
=> \(Q=12-8xy\ge12-8\cdot1=4\)
Dấu = xảy ra khi : \(x=y=1\)
Vậy ...
cảm ơn bạn :)