tìm số tự nhiên a và b biết:a-b=5 và (a,b):[a,b]=1:6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau
$a>b\Rightarrow x>y$
$BCNN(a,b)=6xy=120$
$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$
$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$
b. Bạn làm tương tự.
a. (a,b)=(1,7),(2,6),(3,5),(4,4), (5,3),(6,2), (7,1), (0,8), (8,0)
b.(a,b)=(6,36),(12,18),(18,12),(36,6)
bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho
Đặt : \(ƯCLN\left(a,b\right)=d\)
\(\Rightarrow a=d.m\)\(;\)\(b=d.n\)\(\left(m,n\in N;\left(a,b\right)=1;m>n\right)\)
\(\Rightarrow BCNN\left(a,b\right)=d.m.n\)
Ta có : \(\frac{ƯCLN\left(a,b\right)}{BCNN\left(a,b\right)}=\frac{1}{6}\)
\(\Rightarrow\frac{d}{d.m.n}=\frac{1}{6}\)
\(\Rightarrow m.n=6\)
\(\Rightarrow a-b=d\left(m-n\right)=5\)
Ta lại có : \(\left(m,n\right)=1\)\(;\)\(m.n=6\)\(;\)\(m>n\)
\(\Rightarrow\left(m,n\right)\in\left\{\left(6;1\right);\left(3;2\right)\right\}\)
Xét từng TH :
+) TH1 : \(m=6\)\(;\)\(n=1\)
\(\Rightarrow d\left(m-n\right)=5\)
\(\Rightarrow d\left(6-1\right)=5\)
\(\Rightarrow d.5=5\)
\(\Rightarrow d=1\)
\(\Rightarrow a=d.m=1.6=6\)
\(\Rightarrow b=d.n=1.1=1\)
+) TH2 : \(m=3\)\(;\)\(n=2\)
\(\Rightarrow d\left(m-n\right)=5\)
\(\Rightarrow d\left(3-2\right)=5\)
\(\Rightarrow d.1=5\)
\(\Rightarrow d=5\)
\(\Rightarrow a=d.m=5.3=15\)
\(\Rightarrow b=d.n=5.2=10\)
Vậy \(\left(a,b\right)\in\left\{\left(6;1\right);\left(15;10\right)\right\}\)
Cho mk hỏi
BCNN(a,b)=a.b=d.n.d.m
Thì sao có thể =d.n.m được
Chúc bn học tốt
Thanks bn nhiều
a=8;b=3