K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

f(2016)=2016- 2017*20167 +2017*20166 - 2017*20165 +...+2017*20162 - 2017*2016+ 2018

         =20168 -( 20168 + 2016) + (20167+2016) - (20166 + 2016)+....+20163+2016 -( 20162 + 2016)+2018

         =2018

9 tháng 5 2017

Thay x=2016 thì 2017=x+1 và 2018=x+2 Do đó

\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-...-\left(x+1\right)x\)\(+x+2\)

           \(=x^8-x^8-x^7+x^7+x^6-...+x^2-x^2-x+x+2\)

            \(=2\)

x=2018 nên x-1=2017

\(A=x^{10}-x^9\left(x-1\right)-x^8\left(x-1\right)-...-x^2\left(x-1\right)-x\left(x-1\right)-1\)

\(=x^{10}-x^{10}+x^9-x^9+x^8-...-x^3+x^2-x^2+x-1\)

=x-1=2017

1 tháng 5 2018

Ta có : x - 1 = 2018 - 1 = 2017 

N = x6 - 2017x5 - 2017x4 - 2017x3 - 2017x2 - 2017x - 2017

N = x6 - ( x - 1 ).x5 - ( x - 1 ).x4 - ( x - 1 ).x3 - ( x - 1 ).x2 - ( x - 1 ).x - ( x - 1 )

N = x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x + 1

N = 1

x=2016 nên x+1=2017

\(f\left(x\right)=x^{99}-x^{98}\left(x+1\right)+x^{97}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)

\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}+...-x^3-x^2+x^2+x-1\)

=x-1=2015

 

8 tháng 8 2017

\(f\left(x\right)=x^{99}-2017x^{98}+2017x^{97}-...+2017x-1\)

\(=x^{99}-2016x^{98}-x^{98}+2016x^{97}+...-x^2+2016x+x-2016+2015\)

\(=x^{98}\left(x-2016\right)-x^{97}\left(x-2016\right)+...-x\left(x-2016\right)+\left(x-2016\right)+2015\)

\(=\left(x^{98}-x^{97}+...-x+1\right)\left(x-2016\right)+2015\)

\(\Rightarrow f\left(2016\right)=2015\)

Vậy...

Cảm ơn Tú nhiều nhéyeu <3 bn nhìu nhìu

8 tháng 8 2017

\(f\left(x\right)=x^{99}-2017^{x^{98}}+2017^{x^{97}}-...+2017x-1\)

\(f\left(2016\right)=2016^{99}-2017.2016^{98}+2017.2016^{97}-...+2017.2016-1\)

\(f\left(2016\right)=2016^{99}-\left(2016+1\right).2016^{98}+\left(2016+1\right).2016^{97}-...+\left(2016+1\right).2016-1\)

\(f\left(2016\right)=2016^{99}-2016^{99}-2016^{98}+2016^{98}+2016^{97}-2016^{97}-2016^{96}+...+2016^2+2016-1\)

\(f\left(2016\right)=2016-1\)

\(f\left(2016\right)=2015\)

14 tháng 7 2017

Ta có:

\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)

\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)

\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)

Thay x = 2016 vào ta được giá trị biểu thức trên = 1

Hok tốt!

16 tháng 3 2017

Ta có: 

\(A=x^8-2017x^7+2017x^6-2017x^5+...+2017x^2-2017x+25\)

\(=\left(x^8-2016x^7\right)+\left(-x^7+2016x^6\right)+...+\left(x^2-2016x\right)-x+25\)

\(=\left(x-2016\right)\left(x^7-x^6+...+x\right)-x+25\)

Thế x = 2016 vào A ta được

\(=\left(2016-2016\right)\left(2016^7-2016^6+...+2016\right)-2016+25=-2016+25=-1991\)

16 tháng 3 2017

A=1991