K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2023

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

11 tháng 6 2017

MÌNH KO THẤY ĐƯỜNG KO THẤY BÀI GÌ HẾT

 Ta có: 
{ DE song song với AM (gt) => DE/ AM = BD / BM (Định lí Thalès) 
{ DF song song với AM (gt) => DF / AM = CD / CM (Định lí Thalès) 
=> DE / AM + DF / AM = BD / BM + CD / CM 
<=> (DE + DF) / AM = BD / (BC/2) + CD / (BC/2) = (BD + CD) / (BC/2) 
(Vì AM là trung tuyến trong tam giác ABC => M là trung điểm của BC => BM = CM = BC/2) 
<=> (DE + DF) / AM = BC / (BC/2) = 2BC / BC = 2 
<=> DE + DF = 2AM (điều phải chứng minh) 

b) 
- Xét tứ giác ANDM có: AN // DM (gt) và DN // AM (gt) 
=> Tứ giác ANDM là hình bình hành => AN = DM 

- Ta có: AN // BD (gt) 
=> AN / BD = NE / DE (Định lí Thalès) 
<=> NE = (DE . AN) / BD 
- Ta có: DE + DF = 2AM (cm câu a) 
<=> DE + (DE + NE + NF) = 2AM 
<=> 2DE + EF = 2AM 
<=> EF = 2AM - 2DE = 2(AM - DE) 
<=> EF = 2. {[(DE . BM) / BD] - DE} = 2. [(DE . BM - DE . BD) / BD] 
(do DE/ AM = BD / BM => AM = (DE . BM) / BD ) 
<=> EF = 2. [DE . (BM - BD) / BD] 
<=> EF = 2. (DE . DM) / BD = 2 . (DE . AN) / BD (vì AN = DM) 
<=> EF = 2NE 
<=> NE = EF / 2 
=> N là trung điểm của EF 
Vậy NE = NF (điều phải chứng minh) 

5 tháng 1 2019

A B C D M

5 tháng 1 2019

Hình vẽ đó ,từ làm cho quen đi bn.

Lưu ý:Hình vẽ chỉ mang tính tượng trưng,không chắc là đúng số đo

13 tháng 6 2020

A B C D H E I K

Mình hỗ trợ vẽ hình nhé =)

15 tháng 6 2020

Bài làm

~ Mik hỗ trợ làm bài, chú chả bảo anh làm bài này cho :< Giận thật sự :< ~

a) Xét tam giác ABD và tam giác AHD có:

AB = AH ( gt )

^BAD = ^CAD ( Do AD phân giác  )

AD chung 

=> Tam giác ABD = tam giác AHD ( c.g.c )

=> ^ABD = ^AHB ( hai góc tương ứng )

b) Xét tam giác AHE và tam giác ABC có:

AB = AH ( gt )

^ABC chung

^ABD = ^AHD ( cmt )

=> Tam giác AHE = tam giác ABC ( g.c.g )

c) Vì tam giác ABD = tam giác AHD ( cmt )

=> BD = DH ( hai cạnh tương ứng )

Vì tam giác AHE = tam giác ABC

=> EH = BC ( hai cạnh tương ứng )

Ta có: BD + DC = BC

           DH + ED = EH

Mà EH = BC, BD = DH ( cmt )

=> DC = ED                                                 (1)

~ Tự chứng minh tiếp, bài khá gắt ~

21 tháng 7 2018

a) Xét ΔvABE và ΔvACI, ta có:

AB = AC (ΔABC vuông cân)

∠ABE = ∠ACI (∠ABE = 90° - ∠AEB = 90° - ∠AIC = ∠ACI)

⇒ ΔABE = ΔACI ( cgv-gn )

⇒ BE = CI (cctứ) (đpcm)

b) Ta có: AN // DM // IC (cùng ⊥ BE)

⇒ Tứ giác DMCI là hình thang.

Ta có: AE = AI ( ΔABE = ΔACI )

Mà AE = AD (gt) ⇒ AI = AD

Hình thang DMCI có: AN // DM // IC (cmt); AI = AD (cmt)

⇒ AN là đường trung bình ⇒ NM = NC (đpcm)

21 tháng 7 2018

đáp án đây https://bit.ly/2Lfg9lT nha