K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2021

A C B H

Đặt \(AB=a;AC=b\)

Xét \(\Delta ABC\) vuông tại A ta có :

Áp dụng hệ thức lượng trong \(\Delta\) vuông ta được :

\(\Leftrightarrow AH.BC=a.b\)

\(\Leftrightarrow ab=25.12=300\left(1\right)\)

Mặt khác: 

Xét \(\Delta ABC\) vuông tại A, theo định lý Pytago ta được:

\(\Leftrightarrow a^2+b^2=BC^2\)

\(\Leftrightarrow a^2+b^2=625\)

\(\Leftrightarrow\left(a+b\right)^2-2ab=625\)

Thay \(\text{ab=}300\) vào ta được :

\(\Leftrightarrow\left(a+b\right)^2-600=625\)

\(\Leftrightarrow\left(a+b\right)^2=1225\)

\(\Rightarrow a+b=35\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) Giải phương trình ta được: \(\left\{{}\begin{matrix}a=15\\b=20\end{matrix}\right.\)

\(\Rightarrow AB=15;AC=20\)

Xét \(\Delta AHC\) vuông tại H, theo định lý Pytago ta được:

\(HC=\sqrt{AC^2-AH^2}=16\)

 

6 tháng 6 2021

Ta có: \(AB.AC=AH.BC=12.25=300\left(1\right)\)

Lại có: \(AB^2+AC^2=BC^2=625\)

\(\Rightarrow\left(AB+AC\right)^2=AB^2+AC^2+2AB.AC=625+600=1225\)

\(\Rightarrow AB+AC=35\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AB,AC\) là nghiệm của pt \(x^2-35x+300=0\)

\(\Rightarrow\left(x-20\right)\left(x-15\right)=0\) mà \(AB< AC\Rightarrow\left\{{}\begin{matrix}AB=15\\AC=20\end{matrix}\right.\)

Ta có: \(AC^2=CH.CB\Rightarrow CH=\dfrac{AC^2}{CB}=\dfrac{20^2}{25}=16\)

\(\Rightarrow D\)