K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

THAY X= -1; Y= 1 VÀO BIỂU THỨC

CÓ: \(\left(-1\right)^{100}.1^{100}+\left(-1\right)^{99}.1^{99}+\left(-1\right)^{98}.1^{98}+\left(-1\right)^2.1^2+\left(-1\right).1+1\)

\(=1+\left(-1\right)+1+...+1+\left(-1\right)+1\)

( gạch bỏ các cặp số 1+ (-1) )

\(=0+1\)

\(=0\)

KL: \(x^{100}y^{100}+x^{99}y^{99}+x^{98}y^{98}+...+x^2y^2+1=1\)TẠI X = -1; Y =1

CHÚC BN HỌC TỐT!!
 

9 tháng 7 2019

1,+) Thay x = 5 vào biểu thức A, ta có:

A = 4.52 - 5.|5| + 2.|3 - 5|

A = 4.25 - 5.5 + 2.2

A = 100 - 25 + 4

A = 75 + 4 = 79

Thay x = 3 vào biểu thức A, ta có:

A = 4.32 - 5.|3| + 2.|3 - 3|

A = 4.9 - 5.3 + 2.0

A = 36 - 15 = 21

+) Ta có: B = xy + x2y2 + x3y + ... + x100y100

             B = xy + (xy)2 + (xy)3 + ... + (xy)100

Thay x = 1; y=  -1 vào biểu thức B, ta có:

B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ...  + [1.(-1)]100

B = -1 + 1 - 1 + ... + 1

B = 0

+) Thay x = 1 vào C, ta có:

C = 100.1100 + 99.199 + 98.198 + ... + 2.12  + 1

C = 100 + 99 + 98 + ... + 2 + 1

C = (100 + 1).[(100 - 1) : 1 + 1] : 2

C = 101.100 : 2

C = 5050

+) Thay x = 99 vào biểu thức D, ta có:

D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1

D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99  + 1).9996 + ... + (99 + 1).99 - 1

D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1

D = 99 - 1 = 98

AH
Akai Haruma
Giáo viên
4 tháng 1 2020

Lời giải:

Với $x=-1\Rightarrow x+1=0$. Do đó:

$A=(x^{2014}+x^{2013})+(x^{2012}+x^{2011})+...+(x^2+x)+1$

$=x^{2013}(x+1)+x^{2011}(x+1)+...+x(x+1)+1$

$=x^{2013}.0+x^{2011}.0+...+x.0+1=1$

----------------

\(x=-1; y=1\Rightarrow xy+1=0\)

\(B=(x^{100}y^{100}+x^{99}y^{99})+...+(x^2y^2+xy)+1\)

\(=x^{99}y^{99}(xy+1)+...+xy(xy+1)+1\)

\(=x^{99}y^{99}.0+....+xy.0+1=1\)

a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)

\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)

=0

b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)

\(=\left(1-1\right)+...+\left(1-1\right)\)

=0

c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)

=0

f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)

15 tháng 10 2017

Những hằng đẳng thức đáng nhớ

15 tháng 10 2017

Những hằng đẳng thức đáng nhớ

27 tháng 12 2017

1) Đặt A = 1 + 3 + 32 + .... + 398 + 399

=> 3A = 3 + 32 + .... + 398 + 3100 

=> 3A - A = 3100 - 1

=> 2A = 3100 - 1

=> \(A=\frac{3^{100}-1}{2}\)

Nên : 3100  - (1 + 3 + 32 + .... + 398 + 399)

= 3100 - \(\frac{3^{100}-1}{2}\)

\(\frac{3^{100}.2}{2}-\frac{3^{100}-1}{2}\)

\(\frac{3^{100}.2-3^{100}+1}{2}\)

\(\frac{3^{100}+1}{2}\)

14 tháng 4 2024

Khi Nhân 99/  100 với một số ta được kết quả bằng 100 .

Vậy phép nhân đó là:.......….…

Giảinhanh giúp mình với

 

3 tháng 11 2018

a) \(A=y^2+2y+1\)

\(A=\left(y+1\right)^2\)

Thay y = 99 vào A ta có :

\(A=\left(99+1\right)^2\)

\(A=100^2=10000\)

b) \(B=x^2-6x+9\)

\(B=x^2-2\cdot x\cdot3+3^2\)

\(B=\left(x-3\right)^2\)

Thay x = 103 vào B ta có :

\(B=\left(103-3\right)^2\)

\(B=100^2=10000\)

c) \(C=x^2+4x+4\)

\(C=x^2+2\cdot x\cdot2+2^2\)

\(C=\left(x+2\right)^2\)

Thay x = 98 vào C ta có :

\(C=\left(98+2\right)^2\)

\(C=100^2=10000\)

d) \(D=y^2-2xy+x^2\)

\(D=\left(y-x\right)^2\)

Thay y = 109, x = 9 vào D ta có :

\(D=\left(109-9\right)^2\)

\(D=100^2=10000\)

3 tháng 11 2018

a) x ^ 2 + 2x + 1 = ( x + 1 ) ^ 2 = ( 99 + 1 ) ^ 2 = 100 ^ 2 = 10000

b) x ^ 2 - 6x + 9 = ( x - 3 ) ^ 2 = ( 103 - 3 ) ^ 2 = 100 ^ 2 = 10000

c) x ^ 2 + 4x + 4 = ( x + 2 ) ^ 2 = ( 98 + 2 ) ^ 2 = 100 ^ 2 = 10000

d) y ^ 2 - 2xy + x ^ 2 = ( y - x ) ^ 2 = ( 109 - 9 ) ^ 2 = 100 ^ 2 = 10000

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}