Cho ▲ABC có Â = 60 độ. Chứng tỏ rằng BC² = AB² + AC² - AB . AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao BD ứng với AC
Trong tam giác vuông ABD:
\(\left\{{}\begin{matrix}cosA=\dfrac{AD}{AB}\\sinA=\dfrac{BD}{AB}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AD=AB.cosA=8.cos60^0=4\\BD=AB.sinA=8.sin60^0=4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow CD=AC-AD=8\)
Trong tam giác vuông BCD, áp dụng định lý Pitago:
\(BC=\sqrt[]{BD^2+CD^2}=4\sqrt{7}\) (cm)
Lấy E∈AD�∈�� sao cho AE=AB��=�� mà AD=AB+AC��=��+�� nên AC=DE.��=��.
ΔABEΔ��� cân có ˆBAD=60∘���^=60∘ nên ΔABEΔ��� là tam giác đều suy ra AE=EB.��=��.
Thấy ˆBED=ˆEBA+ˆEAB=120∘���^=���^+���^=120∘ (góc ngoài tại đỉnh E� của tam giác ABE��� ) nên ˆBED=ˆBAC(=120∘)���^=���^(=120∘)
Suy ra ΔEBD=ΔABC(c.g.c)⇒ˆB1=ˆB2Δ���=ΔA��(�.�.�)⇒�1^=�2^ (hai góc tương ứng bằng nhau) và BD=BC��=�� (hai cạnh tương ứng)
Lại có ˆB1+ˆB3=60∘�1^+�3^=60∘ nên ˆB2+ˆB3=60∘.�2^+�3^=60∘.
ΔBCDΔ��� cân tại B� có ˆCBD=60∘���^=60∘ nên nó là tam giác đều.
Đây nhé!
Trước hết bạn cần biết bổ đề sau:
"Trong 1 tam giác vuông, có 1 góc bằng 30 độ thì cạnh góc vuông đối diện với góc 30 độ bằng nửa cạnh huyền" - phần chứng minh xin nhường lại cho bạn, gợi ý là vẽ thêm trung tuyến ứng với cạnh huyền để chứng minh
Kẻ BH ⊥ AC tại H.
Xét tam giác ABH có góc BHA = 90độ (cách kẻ)
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)
Áp dụng định lý Py-ta-go ta có:
AB² = BH² + AH²
=> BH² = AB² - AH² (2)
Xét tam giác BHC có góc BHC = 90độ (cách kẻ)
=> Áp dụng định lý Py-ta-go ta có:
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)
Thay (1) và (2) vào (3) ta có:
BC² = (AB² - AH²) + AC² - AB.AC + AH²
<=> BC² = AB² - AH² + AC² - AB.AC + AH
<=> BC² = AB² + AC² - AB.AC
Kết luận