Cho 3 số thực dương a,b,c thoả mãn a+b+=1. Chứng minh rằng \(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\le\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)
tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
áp dụng bđt cô si ta có:
\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)
Do \(a+b+c=1\) nên :
\(VT=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\frac{ca}{b\left(a+b+c\right)+ac}}\)
\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)
Áp dụng BĐT AM - GM :
\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
Cộng theo vế :
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Ta có: \(ab+bc+ca=abc\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(A=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)
\(\Rightarrow A=\frac{\frac{1}{b}.\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}.\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{b}.\frac{1}{a}}{1+\frac{1}{c}}\)
Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow x+y+z=1\)
\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)
Ta có: \(\frac{xy}{z+1}=\frac{xy}{\left(z+x\right)+\left(z+y\right)}\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)
Chứng minh tương tự ta được:
\(\frac{yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)
\(\frac{zx}{y+1}\le\frac{zx}{x+y}+\frac{zx}{y+z}\)
Cộng vế với vế:
\(\Rightarrow A\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\left(đpcm\right)\)
\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)
Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)
đã bảo là 3 số thực thì có thể dương, có thể âm, có thể là 0, có thể là phân số...
\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)
Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)
\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)
\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh
\(VT=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{4}\left(\frac{ab}{a}+\frac{ab}{b}+\frac{bc}{b}+\frac{bc}{c}+\frac{ca}{c}+\frac{ca}{a}\right)\)
\(VT\le\frac{1}{4}\left(2a+2b+2c\right)=\frac{1}{2}\) (1)
Mặt khác \(\frac{bc}{a}+\frac{ac}{b}\ge2c\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\)
\(\Rightarrow2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge1\)
\(\Rightarrow VP=\frac{1}{4}\left(1+\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge\frac{1}{4}\left(1+1\right)=\frac{1}{2}\) (2)
Từ (1) và (2) suy ra đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)