cho tam giác vuông ABC ( ^A= 90 độ) có AB=12cm, AC=16cm. Tia phân giác góc A cắt BC tại D.
a) Tính tỉ số diện tích 2 tam giác ABD và ACD.
b) Tính độ dài cạnh BC của tam giác.
c)Tính độ dài các đoạn thẳng BD và CD
.d) Tính chiều cao AH của tam giác.
mong mấy a mấy cj, bn chỉ giúp e trc' ngày mai. vì tụi e ch hc đến phần đồng dạng cũa t/giác vuông. thầy cô chỉ giảng sơ sơ móng chỉ giúp e ạ. Thanks nhìu
a) A là phân giác \(\widehat{BAC}\)\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{16}{12}=\frac{4}{3}\Rightarrow\frac{DC+DB}{DB}=\frac{4+3}{3}=\frac{7}{3}\Rightarrow\frac{BD}{DB}=\frac{7}{3}\)
\(\Rightarrow DB=\frac{3}{7}BC=\frac{60}{7}\left(cm\right)\) và \(\Rightarrow DC=\frac{80}{7}\left(cm\right)\)
Kẻ DE vuông góc với AC và DE vuông góc với AC ; AB vuông góc với AC => DE//AB
Áp dụng định lí Ta-let có: \(\frac{DE}{AB}=\frac{CD}{CB}=\frac{\frac{80}{7}}{20}=\frac{4}{7}\Rightarrow DE=\frac{4}{7}AB=\frac{48}{7}\left(cm\right)\)
SACD=\(\frac{1}{2}DE.AC=\frac{1}{2}\cdot\frac{48}{7}.16=\frac{384}{7}cm^2\)
SABD=SABC-SACD\(=\frac{1}{2}.AC.AB-\frac{384}{7}=\frac{288}{7}\left(cm^2\right)\)
Tỉ lệ diện tích ABD và diện tích ACD là \(\frac{3}{4}\)
b) Từ A kẻ đường cao AH ( H thuộc BC).
Do tam giác ABC vuông tại A
Áp dụng định lí pi-ta-go có:
\(BC\sqrt{AB^2+AC^2}=20cm\)
c) Áp dụng định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
\(BD^2=AB^2+AD^2-2.AB.AD.cos\left(45\right)\)
\(DC^2=AC^2+AD^2-2.AC.AD.cos\left(\text{45}\right)\left(2\right)\)
Trừ vế với vế có:\(BD^2-DC^2=AB^2-AC^2-2.AB.AD.cos\left(45\right)+2.AC.AD.cos\left(45\right)\)
\(\left(BD-DC\right)^2-DC^2=-122+4.\sqrt{\left(2\right)}.AD\)
\(400-40.DC=-122+....\)
\(\Rightarrow128-10.DC=\sqrt{\left(2\right)}.AD\left(3\right)\)
Thay (3) v ào (2): Tính được DC = \(\frac{80}{7}\) cm;
\(BD=BC-Dc=\frac{60}{7}\left(cm\right)\)
d) Có SABC= \(AB\cdot\frac{AC}{2}=AH\cdot\frac{BC}{2}\)
Suy ra: \(AH=AB\cdot\frac{AC}{BC}=12\cdot\frac{16}{20}=9,6\left(cm\right)\)