Cho 3 số nguyên dương x,y,z.CMR
1 nhỏ hơn x:(x+y)+y:(y+z)+z:(z+x)nhỏ hơn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=2x+y+z;b=2y+z+x;c=2z+x+y\)
\( \implies\) \(a+b+c=\left(2x+y+z\right)+\left(2y+z+x\right)+\left(2z+x+y\right)\)
\( \implies\) \(a+b+c=4x+4y+4z\)
\( \implies\) \(x+y+z=\frac{a+b+c}{4}\)
+)Ta có : \(a=2x+y+z\)
\(\iff\) \(a=x+\left(x+y+z\right)\)
\(\iff\) \(a-\left(x+y+z\right)=x\)
\(\iff\) \(a-\frac{a+b+c}{4}=x\)
\(\iff\) \(x=\frac{3a-b-c}{4}\)
+)Ta có :\(b=2y+z+x\)
\(\iff\) \(b=y+\left(y+z+x\right)\)
\(\iff\)\(b-\left(y+z+x\right)=y\)
\(\iff\) \(b-\frac{a+b+c}{4}=y\)
\(\iff\)\(y=\frac{3b-c-a}{4}\)
+)Ta có :\(c=2z+x+y\)
\(\iff\) \(c=z+\left(z+x+y\right)\)
\(\iff\) \(c-\left(z+x+y\right)=z\)
\(\iff\) \(c-\frac{a+b+c}{4}=z\)
\(\iff\)\(z=\frac{3c-a-b}{4}\)
\( \implies\) \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\)
\(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)
\(=\frac{9}{4}-\left(\frac{b}{4a}+\frac{c}{4a}+\frac{c}{4b}+\frac{a}{4b}+\frac{a}{4c}+\frac{b}{4c}\right)\)
\(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)
\(=\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\)
Áp dụng bất đẳng thức ( BĐT Cosi ) : \(m+n\)\( \geq\)\(2\sqrt{mn}\) \(\left(m;n>0\right)\)ta được :
\(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{a}.\frac{a}{b}}\) = 2 \( \implies\) \(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2
\(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2 \(\sqrt{\frac{c}{a}.\frac{a}{c}}\) = 2 \( \implies\) \(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2
\(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{c}.\frac{c}{b}}\) = 2 \( \implies\) \(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2
\( \implies\) \(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\) \( \geq\) 2 + 2 + 2
\( \implies\) \(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\) \( \geq\) 6
\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{6}{4}\)
\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{3}{2}\)
\( \implies\) \(-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(-\frac{3}{2}\)
\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{9}{4}-\frac{3}{2}\)
\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{3}{4}\)
đây là bài toán ko ai giải đc tuy nhiên mk bít sẽ có 1 trong thế giới này giải đc trong hiện tại hoặc tương lai cố nhé
Theo giả thiết cho: \(xyzt=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1-t\right)\)
\(\Rightarrow\frac{1-x}{x}.\frac{1-y}{y}.\frac{1-z}{z}.\frac{1-t}{t}=1\)
Đặt \(\left(\frac{1-x}{x},\frac{1-y}{y},\frac{1-z}{z},\frac{1-t}{t}\right)\rightarrow\left(a,b,c,d\right)\). Lúc đó thì giả thiết được viết lại thành abcd = 1
Ta có: \(a=\frac{1-x}{x}=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\Rightarrow x^2=\frac{1}{\left(a+1\right)^2}\)
Tương tự, ta có: \(y^2=\frac{1}{\left(b+1\right)^2};z^2=\frac{1}{\left(c+1\right)^2};t^2=\frac{1}{\left(d+1\right)^2}\)và khi đó ta cần chứng minh:\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{1}{\left(d+1\right)^2}\ge1\)
Ta có BĐT phụ sau: \(\frac{1}{\left(p+1\right)^2}+\frac{1}{\left(q+1\right)^2}\ge\frac{1}{pq+1}\)(*)
Thật vậy, theo BĐT Cauchy-Schwarz cho hai dãy số (pq;1) và \(\left(\frac{p}{q};1\right)\), ta có: \(\left(pq+1\right)\left(\frac{p}{q}+1\right)\ge\left(p+1\right)^2\)
\(\Rightarrow\frac{1}{\left(p+1\right)^2}\ge\frac{\frac{q}{p+q}}{pq+1}\)(1)
Tương tự ta có: \(\Rightarrow\frac{1}{\left(q+1\right)^2}\ge\frac{\frac{p}{p+q}}{pq+1}\)(2)
Cộng theo vế của 2 BĐT (1) và (2), ta được:
\(\frac{1}{\left(p+1\right)^2}+\frac{1}{\left(q+1\right)^2}\ge\frac{1}{pq+1}\)(đúng với (*))
Áp dụng vào bài toán, ta được:
\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{1}{\left(d+1\right)^2}\ge\frac{1}{ab+1}+\frac{1}{cd+1}\)
\(=\frac{1}{\frac{1}{cd}+1}+\frac{1}{cd+1}=\frac{cd}{cd+1}+\frac{1}{cd+1}=1\)
Đẳng thức xảy ra khi \(a=b=c=d=1\)hay x = y = z = t = \(\frac{1}{2}\)
Đặt \(J=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\) với \(\hept{\begin{cases}x,y,z>0\\x+y+z\le1\end{cases}}\left(i\right)\)
Áp dụng bất đẳng thức \(B.C.S\) cho hai bộ số thực không âm gồm có \(\left(x^2;\frac{1}{x^2}\right)\) và \(\left(1^2+9^2\right),\) ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(1^2+9^2\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Rightarrow\) \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{x}\right)\) \(\left(1\right)\)
Đơn giản thiết lập hai bất đẳng thức còn lại theo vòng hoán vị \(y\rightarrow z\) , ta cũng có:
\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{y}\right)\) \(\left(2\right);\) \(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{z}\right)\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) , suy ra:
\(J\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)
Ta có:
\(K=x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)
\(=\left(9x+\frac{1}{x}\right)+\left(9y+\frac{1}{y}\right)+\left(9z+\frac{1}{z}\right)+8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-8\left(x+y+z\right)\)
Khi đó, áp dụng bđt Cauchy đối với từng ba biểu thức đầu tiên, tiếp tục với bđt Cauchy-Swarz dạng Engel cho biểu thức thứ tư, chú ý rằng điều kiện đã cho \(\left(i\right)\) , ta có:
\(K\ge2\sqrt{9x.\frac{1}{x}}+2\sqrt{9y.\frac{1}{y}}+2\sqrt{9z.\frac{1}{z}}+\frac{72}{x+y+z}-8\left(x+y+z\right)\)
\(=6+6+6+72-8=82\)
Do đó, \(K\ge82\)
Suy ra \(J\ge\frac{82}{\sqrt{82}}=\sqrt{82}\) (đpcm)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z=\frac{1}{3}\)
Có : x/x+y ; y/y+z ; z/z+x đều > 0
=> x/x+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1
Lại có : x/x+y ; y/y+z ; z/z+x đều < 1
=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = 2x+2y+2z/x+y+z = 2
=> ĐPCM
Tk mk nha