Cho a,b là các số tự nhiên sao cho [a-b]chia hết cho 11 . Chứng minh rằng [3xa+8xb]chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5
hok tốt
Bài 1:
Ta có:
$a-3\vdots 5, a-4\vdots 7$
$\Rightarrow a-3-5.3\vdots 5, a-4-7.2\vdots 7$
$\Rightarrow a-18\vdots 5, a-18\vdots 7$
$\Rightarrow a-18=BC(5,7)$
$\Rightarrow a-18\vdots BCNN(5,7)\Rightarrow a-18\vdots 35$
$\Rightarrow a=35k+18$ với $k$ tự nhiên.
Lại có:
$a-6\vdots 11$
$\Rightarrow 35k+12\vdots 11$
$\Rightarrow 35k+12-33k\vdots 11$
$\Rightarrow 2k+12\vdots 11$
$\Rightarrow 2(k+6)\vdots 11\Rightarrow k+6\vdots 11$
$\Rightarrow k=11m-6$ với $m$ tự nhiên.
$a=35k+18=35(11m-6)+18=385m-192$
Để $a$ là số tự nhiên nhỏ nhất thì $m$ nhỏ nhất.
Mà $a\geq 0\Rightarrow 385m-192\geq 0\Rightarrow m>0$
$\Rightarrow$ m nhỏ nhất bằng 1
$\Rightarrow a_{\min}=385.1-192=193$
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n