Phân tích các đa thức sau thành phân tử
a)x^2(x^4-1)(x^2+2)+1
B) 1+(a+b+c)+(ab+bc+ca)+abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)
A=8abc+4(ab+bc+ca)+2(a+b+c)+1�=8���+4(��+��+��)+2(�+�+�)+1
A = 8abc + 4ab + 4bc + 4ca + 2a + 2b + 2c + 1
A=(8abc+4ab)+(4bc+2b)+(4ca+2a)+(2c+1)�=(8���+4��)+(4��+2�)+(4��+2�)+(2�+1)
A=4ab(2c+1)+2b(2c+1)+2a(2c+1)+(2c+1)�=4��(2�+1)+2�(2�+1)+2�(2�+1)+(2�+1)
A=(2c+1)(4ab+2a+2b+1)�=(2�+1)(4��+2�+2�+1)
A=(2c+1)[2a(2b+1)+(2b+1)]�=(2�+1)[2�(2�+1)+(2�+1)]
A=(2a+1)(2b+1)(2c+1)
a) \(=\left(2x-1\right)^2\)
b) \(=x\left(y^2-x^2+2x-1\right)=x\left[y^2-\left(x-1\right)^2\right]=x\left(y-x+1\right)\left(y+x-1\right)\)
a) \(4\left(x+1\right)^3-x-1=4\left(x+1\right)^3-\left(x+1\right)=\left(x+1\right)\left[4\left(x+1\right)^2-1\right]=\left(x+1\right)\left[2\left(x+1\right)-1\right]\left[2\left(x+1\right)+1\right]=\left(x+1\right)\left(2x+1\right)\left(2x+3\right)\)
b) \(5x\left(x-3\right)+\left(3-x\right)^2-\left(x-3\right)=5x\left(x-3\right)+\left(x-3\right)^2-\left(x-3\right)=\left(x-3\right)\left(5x+x-3-1\right)=\left(x-3\right)\left(6x-4\right)=2\left(x-3\right)\left(3x-2\right)\)
c) \(9x^2y^3-3x^4y^2-6x^3y^2+16xy^4=xy^2\left(9xy-3x^3-6x^2+16y^2\right)\)
a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)
b) \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\Leftrightarrow1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)-25=0\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\Leftrightarrow\left(x+y+1+xy\right)^2-25=0\Leftrightarrow\left(x+y+xy-24\right)\left(x+y+xy+26\right)=0\)
a: Ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
a: \(=\left(x+1\right)\left(x^2-x+1\right)+5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+1\right)\)