Giai phuong trinh: \(\frac{x}{x^2+9x+2015}\)\(=\)\(\frac{x^2+10x+2015}{x^2+8x+2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\((2x^2+x-2015)^2+4(x^2-5x-2016)^2=4(2x^2+x-2015)(x^2-5x-2016)\)
\(\Rightarrow\left(2x^2+x-2015\right)^2-2.\left(2x^2+x-2015\right).2.\left(x^2-5x-2016\right)+[2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow[2x^2+x-2015-2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow11x+2017=0\)
\(\Rightarrow x=\frac{-2017}{11}\)
=> \(x^4-2015+\sqrt{x^2+2015}=0\)
<=> \(x^4-\left(x^2+2015\right)+x^2+\sqrt{x^2+2015}=0\)
<=> \(\left(x^2+\sqrt{x^2+2015}\right).\left(x^2-\sqrt{x^2+2015}\right)+\left(x^2+\sqrt{x^2+2015}\right)=0\)
<=> \(\left(x^2+\sqrt{x^2+2015}\right).\left(x^2-\sqrt{x^2+2015}+1\right)=0\)
=> \(x^2-\sqrt{x^2+2015}+1=0\) (*) (Vì \(x^2+\sqrt{x^2+2015}>0\) với mọi x )
Đặt \(\sqrt{x^2+2015}=t\Rightarrow x^2+2015=t^2\Rightarrow x^2=t^2-2015\)
thay vào (*) ta được: t2 - 2015 - t + 1 = 0
=> t2 - t - 2014 = 0
\(\Delta\) = 1 + 4. 2014 = 8057
=> \(t_1=\frac{1+\sqrt{8057}}{2};t_2=\frac{1-\sqrt{8057}}{2}\)
nhận t1 => x2 = \(\left(\frac{1+\sqrt{8057}}{2}\right)^2-2015\) => x = .....
\(\dfrac{x+2}{2016}+\dfrac{x+3}{2015}+\dfrac{x+4}{2014}+\dfrac{x+2036}{6}=0\)
<=>\(\dfrac{x+2}{2016}+1+\dfrac{x+3}{2015}+1+\dfrac{x+4}{2014}+1+\dfrac{x+2036}{6}-3=0\)
<=>\(\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}+\dfrac{x+2018}{2014}+\dfrac{x+2018}{6}=0\)
<=>\(\left(x+2018\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{6}\right)=0\)
vì 1/2016+1/2015+1/2014+1/6 khác 0
=>x+2018=0<=>x=-2018
vậy...................
chúc bạn học tốt ^ ^
Giải phương trình không có vế phải thì giải bằng niềm tin à bạn?
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương