chứng minh S = 1/11 + 1/12 + ... + 1/19 + 1/20>1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/20 + 1/20 + 1/20 + ... + 1/20 + 1/20 < 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 < 1/10 + 1/10 + 1/10 + ... + 1/10 + 1/10 = 10/20 < S < 10/10 \(\Rightarrow\)1/2 < S < 1 ( đpcm )
Ta có : 1/11+1/12+1/13+...+1/19+1/20 > 1/20+1/20+1/20+...+1/20+1/20 =10/20=1/2
có tất cả 10 phân số 1/20
=> S > 1/2
1/11+1/12+1/13+...+1/19+1/20 < 1/10+1/10+1/10+...+1/10+1/10 =10/10=1
có tất cả 10 phân số /10
=> S<1
=> 1/2 < S <1
Xét: 1-1/2+1/3-1/4+...+1/19-1/20 = (1+1/3+1/5+...1/19) - (1/2+1/4+1/6+...+1/20)
= (1+ 1/2+1/3+...+1/20) - 2.(1/2+1/4+...+1/20)
= (1+1/2+1/3+...+1/20) - (1+1/2+...+1/10)
= 1/11+1/12+1/13+...+1/20 (dpcm)
Vậy, 1-1.2+1/3-1/4+...+1/19-1/20=1/11+1/12+1/13+...+1/20
Ta có: 1/20<1/11
1/20<1/12
...
=> 1/20+1/20+..+1/20 < 1/11+1/12+...+1/20
=> 1/20.10<1/11.1/12+1/13+...+1/20
=> 1/2< 1/11+1/12+1/12+1/13+...+1/20
=> 1/2<S (đpcm)
k mik nhé các bạn. Thanks you nhé ^_<
ta có:1/11 ; 1/12 ; 1/13; ....; 1/19 ;1/20 đều lớn hơn 1/20
=>1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 1/20+1/20+...+1/20 (10 phân số 1/20)
=>1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 10/20
=>1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 1/2
=>đpcm
Ta có S = 1/11+1/12+1/13+...+1/19+1/20 nên S có 10 số hạng
Và 1/2 = 10/20 =
Mà 1/11 > 1/12 > 1/13 > 1/14 > 1/15 > 1/16 > 1/17 > 1/18 > 1/19 > 1/20
Nên 1/11+1/12+1/13+...+1/19+1/20 > 1/20x10
=> 1/11+1/12+1/13+...+1/19+1/20 > 10/20
=> 1/11+1/12+1/13+...+1/19+1/20 > 1/2
Vậy S > 1/2Ta có S = 1/11+1/12+1/13+...+1/19+1/20 nên S có 10 số hạng
Và 1/2 = 10/20 =
Mà 1/11 > 1/12 > 1/13 > 1/14 > 1/15 > 1/16 > 1/17 > 1/18 > 1/19 > 1/20
Nên 1/11+1/12+1/13+...+1/19+1/20 > 1/20x10
=> 1/11+1/12+1/13+...+1/19+1/20 > 10/20
=> 1/11+1/12+1/13+...+1/19+1/20 > 1/2
Vậy S > 1/2
#)Giải :
Ta có : \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}< \frac{5}{6}\)(có 10 số \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}< \frac{5}{6}\)
Hay \(S< \frac{5}{6}\left(đpcm\right)\)
Ta có:\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.........+\frac{1}{19}+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+........+\frac{1}{20}\) (có 10 số \(\frac{1}{20}\))
\(=\frac{1}{20}.10=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\left(đpcm\right)\)
Ta có : 1/11 < 1/20 , 1/12 < 1/20 , .. , 1/19 < 1/20 , 1/20 = 1/20
=> 1/11 + 1/12 + ...+ 1/19 + 1/20 > 1/20 . 10
=> S > 10/20
=> S > 1/2
Chúc học giỏi !!! ^_^