Cho tam giác ABC. \(\widehat{A}>\widehat{B}>\widehat{C}\). Vẽ đường cao AH rồi lấy điểm o nằm giữa A và H.
a/ CMR: Góc B và C là góc nhọn
b/ So sánh OB VÀ OC: OD VÀ HD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ▲OAD và ▲OBC có :
OA = OB ( gt )
góc COD chung
OC = OD ( gt )
=> ▲OAD = ▲OBC ( c-g-c )
=> đpcm
b) Gọi giao điểm của BC và AD là M
Vì ▲OAD = ▲OBC ( c/m trên )
=> góc OCB = góc ODA ( 2 góc tương ứng )
Xét ▲ACM có góc MAC + góc ACM + góc CMA = 1800
Xét ▲BMD có góc BMD + góc MDB + góc DBM = 1800
Mà góc OCB = góc ODA ( c/m trên ) và góc CMA = góc BMD ( đối đỉnh )
=> góc CAM = góc MBD ( đpcm )
Cuối cùng thì mình vẫn tự hỏi tự trả lời
a)Ta có: \(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)( cạnh đối diện)
=> HC>HB(quan hệ đường xiên, hình chiếu)
Do \(O\in AH\Rightarrow OC>OB\)(quan hệ hình chiếu, đường xiên)
Vậy OC>OB.
b)Xét tam giác HOC: \(\widehat{H}=90\)độ => \(\widehat{HOC}\) là góc nhọn
Mà \(\widehat{DOH}+\widehat{HOC}=180\)độ (kề bù) \(\Rightarrow\widehat{DOH}\) là góc tù
Xét tam giác DOH: \(\widehat{DOH}\) lớn nhất =>DH lớn nhất => OD<DH.
Vậy OD<DH.
a) vì góc A lớn nhất nên góc A có thể là góc vuông, góc tù hoặc góc nhọn.
+trường hợp A là góc vuông và góc tù thì góc B và C ko thể lớn hơn hoặc bằng 90 độ. do đó góc B và C là góc nhọn
+ trường hợp góc A là góc nhọn thì góc B và góc C cx bé hơn 90 độ vì góc A>góc B> góc C.
a) Ta có: góc A> góc B> góc C
\(\Rightarrow\) góc B và góc C là góc nhọn
a. Xét \(\Delta OAD\)và \(\Delta OBC\)
OA = OB (giả thiết)
góc O chung
OD = OC (giả thiết)
\(\Rightarrow\)\(\Delta\)OAD = \(\Delta\)OBC (c.g.c)
Vì tam giác OAD = OBC \(\Rightarrow\)góc OAD=OBC (2 góc tương ứng)
\(\Rightarrow\)Góc CAD=góc CBD.
a)
\(AB > AC \Rightarrow \widehat {ABC} < \widehat {ACB}\)( quan hệ giữa góc và cạnh đối diện trong tam giác ABC)
\(\begin{array}{l} \Rightarrow {180^0} - \widehat {ABD} < {180^0} - \widehat {ACE}\\ \Rightarrow \widehat {ABD} > \widehat {ACE}\end{array}\)
Vì BD= BA nên tam giác ABD cân tại B \( \Rightarrow \widehat {ABD} = {180^0} - 2\widehat {ADB}\)
Vì CE = CA nên tam giác ACE cân tại C \( \Rightarrow \widehat {ACE} = {180^0} - 2\widehat {AEC}\)
\(\begin{array}{*{20}{l}}{ \Rightarrow {{180}^0} - 2\widehat {ADB} > {{180}^0} - 2\widehat {AEC}}\\{ \Rightarrow \widehat {ADB} < \widehat {AEC}}\\{Hay{\mkern 1mu} \widehat {ADE} < \widehat {AED}}\end{array}\)
b) Xét tam giác ADE ta có : \(\widehat {ADB} < \widehat {AEC}\)
\( \Rightarrow AD > AE\)(Quan hệ giữa cạnh và góc đối diện trong tam giác).